@misc{MalliotakisBanyonZhangetal., author = {Malliotakis, Zisis and Banyon, Colin and Zhang, Kuiwen and Wagnon, Scott W. and Rodriguez Henriquez, Jose Juan and Vourliotakis, George and Keramiotis, Christos and Founti, Maria and Mauß, Fabian and Pitz, William J. and Curran, Henry J.}, title = {Testing the validity of a mechanism describing the oxidation of binary n-heptane/toluene mixtures at engine operating conditions}, series = {Combustion and Flame}, volume = {199}, journal = {Combustion and Flame}, issn = {0010-2180}, doi = {10.1016/j.combustflame.2018.10.024}, pages = {241 -- 248}, abstract = {The aim of this work is to evaluate the influence of the n-heptane/toluene ratio on the reactivity of binary toluene reference fuels (TRFs), through a combined experimental and numerical work. Novel experimental ignition delay time (IDT) data of three binary TRFs of varying n-heptane/toluene ratios have been obtained in a high-pressure shock tube and in a rapid compression machine at conditions relevant to novel engine operation. Measurements have been performed at two pressures (10 and 30 bar), and at three fuel/air equivalence ratios (0.5, 1.0 and 2.0) for TRF mixtures of 50\%, 75\% and 90\% by volume toluene concentration, over the temperature range of 650-1450 K. It was found that, increasing the n-heptane content, led to an increase in reactivity and shorter measured IDTs. Reduced sensitivity to the equivalence ratio was observed at high temperatures, especially for high toluene content mixtures. A …}, language = {en} } @misc{DongAulGregoireetal., author = {Dong, Shijun and Aul, Christopher and Gregoire, Claire and Cooper, Sean P. and Mathieu, Olivier and Petersen, Eric L. and Rodriguez, Jose and Mauß, Fabian and Wagnon, Scott W. and Kukkadapu, Goutham and Pitz, William J. and Curran, Henry J.}, title = {A comprehensive experimental and kinetic modeling study of 1-hexene}, series = {Combustion and Flame}, volume = {232}, journal = {Combustion and Flame}, issn = {1556-2921}, doi = {10.1016/j.combustflame.2021.111516}, abstract = {It is important to understand the low-temperature chemistry of 1-hexene as it is used as a representative alkene component in gasoline surrogate fuels. Ignition delay times (IDTs) of 1-hexene measured in rapid compression machines (RCMs) can be used to validate its low-temperature chemistry. However, volume history profiles are not available for published RCM IDT data. This has restricted the validation of the low-temperature chemistry of 1-hexene at engine-relevant conditions (i.e. at low temperatures and high pressures). Thus, new RCM IDT data with associated volume history profiles are needed. In this study, both an RCM and a high-pressure shock tube (ST) are employed to measure IDTs of 1-hexene at equivalence ratios of 0.5, 1.0 and 2.0 in 'air' and at pressures of 15 and 30 atm. A cool-flame (first stage) and total (second stage) ignition was observed in the RCM experiments. Moreover, carbon monoxide and water versus time histories produced during 1-hexene oxidation at highly diluted conditions were measured in a ST. A new detailed chemical kinetic model describing 1-hexene oxidation is proposed and validated using these new measured data together with various experimental data available in the literature. The kinetic model can predict well the auto-ignition behavior and oxidation processes of 1-hexene at various conditions. The rate constants and branching ratio for hydroxyl radical addition to the double bond of 1-hexene are particularly important and discussed based on the experimental and theoretically calculated results from previous studies as well as validation results from jet-stirred reactor (JSR) species profiles. Flux and sensitivity analyses are performed to determine the important reaction classes for 1-hexene oxidation and show that the reactions associated with hydroxy radical addition to the double bond contribute most to the low-temperature reactivity of 1-hexene. In the negative temperature coefficient (NTC) regime, the isomerization of hexenyl-peroxy radicals promotes fuel reactivity due to its associated chain branching pathways.}, language = {en} } @inproceedings{MalliotakisBanyonCurranetal., author = {Malliotakis, Zisis and Banyon, Colin and Curran, Henry J. and Founti, Maria and Keramiotis, Christos and Vourliotakis, George and Koutmos, Panagiotis and Paterakis, George and Souflas, Konstantinos and Mauß, Fabian and Rodriguez Henriquez, Jose Juan and Skevis, George}, title = {A Comperative Study on the Oxidation of Gaseous and Liquid fuels in a Swirlstabilized Flame via Chemiluminescence Measurements}, series = {Book of abtracts, COST SMARTCATs 2nd General Meeting, Lisbon, 14-16th November}, booktitle = {Book of abtracts, COST SMARTCATs 2nd General Meeting, Lisbon, 14-16th November}, publisher = {Cost, European Cooperation in Science and Technology}, pages = {84 -- 85}, language = {en} } @misc{BanyonRodriguezHenriquezPaterakisetal., author = {Banyon, Colin and Rodriguez Henriquez, Jose Juan and Paterakis, George and Malliotakis, Zisis and Souflas, Konstantinos and Keramiotis, Christos and Vourliotakis, George and Mauß, Fabian and Curran, Henry J. and Skevis, George and Koutmos, Panagiotis and Founti, Maria}, title = {A comparative study of the effect of varied reaction environments on a swirl stabilized flame geometry via optical measurements}, series = {Fuel : the science and technology of fuel and energy}, volume = {216}, journal = {Fuel : the science and technology of fuel and energy}, issn = {0016-2361}, doi = {10.1016/j.fuel.2017.09.105}, pages = {826 -- 834}, abstract = {The present work is a part of a larger experimental campaign which examines the behaviour of various fuels on a swirl stabilized flame burner configuration. Overall, detailed speciation measurements and temperature measurements were combined with optical measurements. The work presented here concerns the part of the experimental campaign which deals with the optical characteristics of the examined flames. The work adds to the growing database of experimental measurements assessing engine-relevant reaction environments which shift from traditional ones in order to meet pollutant emission regulations and efficiency standards. Here, the oxidation of several commonly used fuel and fuel surrogates that are subjected to the addition of a bio-derived fuel additive (dimethyl ether) and emulated exhaust gas recirculation (EGR) is studied in a laboratory-scale swirl …}, language = {en} }