@misc{GonzalezAriasGonzalezCastanoSanchezetal., author = {Gonz{\´a}lez-Arias, Judith and Gonz{\´a}lez-Casta{\~n}o, Miriam and S{\´a}nchez, Marta Elena and Cara-Jim{\´e}nez, Jorge and Arellano-Garc{\´i}a, Harvey}, title = {Valorization of biomass-derived CO2 residues with Cu-MnOx catalysts for RWGS reaction}, series = {Renewable Energy}, journal = {Renewable Energy}, number = {182}, issn = {1879-0682}, doi = {10.1016/j.renene.2021.10.029}, pages = {443 -- 451}, abstract = {This study delivers useful understanding towards the design of effective catalytic systems for upgrading real CO2erich residual streams derived from biomass valorization. Within this perspective, a catalysts' series based on (5 wt\%) Cu - (X wt\%) Mn/Al2O3with X¼0, 3, 8, and 10 is employed. The improved catalyst performance achieved through Mn incorporation is ascribed to enhanced Cu dispersions and promoted surface basic concentrations. Under standard RWGS conditions, the highest reaction rates achieved by(5 wt\%) Cu - (8 wt\%) Mn/Al2O3catalyst were associated to improved Cu dispersions along with the constitution of highly active Cu-MnOxdomains. Remarkably, variations on the optimal Cu to Mn ratios were detected as a function of the RWGS reaction conditions. Thus, under simulated CO2-rich residual feedstock's, i.e., in presence of CO and CH4, the further promotion on the Cu dispersion attained by the larger amounts of MnOxrendered the (5 wt\%) Cu - (10 wt\%) Mn/Al2O3catalyst as the best performing sample. Overall, the presented outcomes underline operative strategies for developing catalytic systems with advanced implementation potentialities.}, language = {en} } @misc{GonzalezAriasBaenaMorenoGonzalezCastanoetal., author = {Gonz{\´a}lez-Arias, Judith and Baena-Moreno, Francisco Manuel and Gonz{\´a}lez-Casta{\~n}o, Miriam and Arellano-Garc{\´i}a, Harvey}, title = {Economic approach for CO2 valorization from hydrothermal carbonization gaseous streams via reverse water-gas shift reaction}, series = {Fuel}, volume = {313}, journal = {Fuel}, issn = {0016-2361}, doi = {10.1016/j.fuel.2021.123055}, pages = {1 -- 7}, abstract = {In this work the economic performance of valorizing the gaseous stream coming from hydrothermal carbonization (HTC) of olive tree pruning is presented as a novel strategy to improve the competitiveness of HTC. The valorization of the commonly disregarded gaseous stream produced in this thermochemical treatment was proposed via the Reverse Water-Gas Shift reaction. This allows to obtain syngas for selling and therefore improving the overall economic performance of the process. To this end, three plant sizes were selected (312.5, 625 and 1250 kg/h of biomass processing). The parameters with a higher share in the total cost distribution along with the revenues from the hydrochar and the syngas selling were further evaluated. The results evidenced that with the assumptions taken, the overall process is still not profitable. To reach profitability, syngas selling prices between 2.2 and 3.4 €/m3 are needed, revealing that this proposal is not economically attractive. Alternatively, a lack of competitiveness in the current market is revealed with hydrochar selling prices between 0.41 and 0.64 €/kg to make the project profitable. The catalyst cost, sharing approximately 20\% of the total cost, is the parameter with the highest impact in the total economics of the process. The second one is the hydrogen price production, representing almost 16\% of the total. Investment subsidies are also examined as a potential tool to cover part of the initial investment. These results evidenced that further efforts and measures are needed to push forward in the path towards circular economy societies.}, language = {en} }