@misc{GonzalezCastanoGonzalezAriasSanchezetal., author = {Gonz{\´a}lez-Casta{\~n}o, Miriam and Gonz{\´a}lez-Arias, Judith and S{\´a}nchez, Marta Elena and Cara-Jim{\´e}nez, Jorge and Arellano-Garc{\´i}a, Harvey}, title = {Syngas production using CO2-rich residues: From ideal to real operating conditions}, series = {Journal of CO2 utilization}, volume = {52}, journal = {Journal of CO2 utilization}, issn = {2212-9839}, doi = {10.1016/j.jcou.2021.101661}, pages = {10}, language = {en} } @misc{GonzalezCastanoDorneanuArellanoGarcia, author = {Gonz{\´a}lez-Casta{\~n}o, Miriam and Dorneanu, Bogdan and Arellano-Garcia, Harvey}, title = {The Reverse Water Gas Shift Reaction: A Process Systems Engineering Perspective}, series = {Reaction Chemistry \& Engineering}, journal = {Reaction Chemistry \& Engineering}, issn = {2058-9883}, doi = {10.1039/D0RE00478B}, abstract = {The catalytic reduction of CO2 into value-added products has been considered a compelling solution for alleviating global warming and energy crises. The reverse water gas shift (RWGS) reaction plays a pivotal role among the various CO2 utilization approaches, due to the fact that it produces syngas, the building block of numerous conversion processes. Although a lot of work has been carried out towards the development of a RWGS process, ranging from efficient catalytic systems to reactor units, and even pilot scale processes, there is still a lack of understanding of the fundamental phenomena that take place at the various levels and scales of the process. This contribution presents the main solutions and remaining challenges for a structured, trans- and multidisciplinary framework in which catalysis engineering and process systems engineering can work together to incorporate understanding and methods from both sides, to accelerate the investigation, creation and operation of an efficient industrial CO2 conversion process based on the RWGS reaction.}, language = {en} } @misc{GonzalezCastanoNavarrodeMiguelPernkovaetal., author = {Gonz{\´a}lez-Casta{\~n}o, Miriam and Navarro de Miguel, Juan Carlos and Pernkova, A. and Centeno, Miguel Angel and Odriozola, Jos{\´e} Antonio and Arellano-Garcia, Harvey}, title = {Ni/YMnO3 perovskite catalyst for CO2 methanation}, series = {Applied Materials Today}, volume = {23}, journal = {Applied Materials Today}, doi = {10.1016/j.apmt.2021.101055}, abstract = {Ni/YMnO3 perovskite catalyst for CO2 methanation}, language = {en} } @misc{GonzalezCastanoBaenaMorenoNavarrodeMigueletal., author = {Gonz{\´a}lez-Casta{\~n}o, Miriam and Baena-Moreno, Francisco Manuel and Navarro de Miguel, Juan Carlos and Miah, Kamal Uddin Mohammad and Arroyo-Torralvo, F{\´a}tima and Ossenbrink, Ralf and Odriozola, Jos{\´e} Antonio and Benzinger, Walther and Hensel, Andreas and Wenka, Achim and Arellano-Garc{\´i}a, Harvey}, title = {3D-printed structured catalysts for CO2 methanation reaction: Advancing of gyroid-based geometries}, series = {Energy Conversion and Management}, volume = {258}, journal = {Energy Conversion and Management}, issn = {2590-1745}, doi = {10.1016/j.enconman.2022.115464}, pages = {8}, abstract = {This work investigates the CO2 methanation rate of structured catalysts by tuning the geometry of 3D-printed metal Fluid Guiding Elements (FGEs) structures based on periodically variable pseudo-gyroid geometries. The enhanced performance showed by the structured catalytic systems is mostly associated with the capability of the FGEs substrate geometries for efficient heat usages. Thus, variations on the channels diameter resulted in ca. 25\% greater CO2 conversions values at intermediate temperature ranges. The highest void fraction evidenced in the best performing catalyst (3D-1) favored the radial heat transfer and resulted in significantly enhanced catalytic activity, achieving close to equilibrium (75\%) conversions at 400 ◦C and 120 mL/min. For the 3D-1 catalyst, a mathematical model based on an experimental design was developed thus enabling the estimation of its behavior as a function of temperature, spatial velocity, hydrogen to carbon dioxide (H2/CO2) ratio, and inlet CO2 concentration. Its optimal operating conditions were established under 3 different scenarios: 1) no restrictions, 2) minimum H2:CO2 ratios, and 3) minimum temperatures and H2/CO2 ratio. For instance, for the lattest scenario, the best CO2 methanation conditions require operating at 431 ◦C, 200 mL/min, H2/CO2 = 3 M ratio, and inlet CO2 concentration = 10 \%.}, language = {en} } @misc{TarifaRamirezReinaGonzalezCastanoetal., author = {Tarifa, Pilar and Ramirez Reina, Tomas and Gonz{\´a}lez-Casta{\~n}o, Miriam and Arellano-Garcia, Harvey}, title = {Catalytic Upgrading of Biomass-Gasification Mixtures Using Ni-Fe/MgAl₂O₄ as a Bifunctional Catalyst}, series = {Energy and Fuels}, volume = {36}, journal = {Energy and Fuels}, number = {15}, issn = {1520-5029}, doi = {10.1021/acs.energyfuels.2c01452}, pages = {8267 -- 8273}, abstract = {Biomass gasification streams typically contain a mixture of CO, H2, CH4, and CO2 as the majority components and frequently require conditioning for downstream processes. Herein, we investigate the catalytic upgrading of surrogate biomass gasifiers through the generation of syngas. Seeking a bifunctional system capable of converting CO2 and CH4 to CO, a reverse water gas shift (RWGS) catalyst based on Fe/MgAl2O4 was decorated with an increasing content of Ni metal and evaluated for producing syngas using different feedstock compositions. This approach proved efficient for gas upgrading, and the incorporation of adequate Ni content increased the CO content by promoting the RWGS and dry reforming of methane (DRM) reactions. The larger CO productivity attained at high temperatures was intimately associated with the generation of FeNi3 alloys. Among the catalysts' series, Ni-rich catalysts favored the CO productivity in the presence of CH4, but important carbon deposition processes were noticed. On the contrary, 2Ni-Fe/MgAl2O4 resulted in a competitive and cost-effective system delivering large amounts of CO with almost no coke deposits. Overall, the incorporation of a suitable realistic application for valorization of variable composition of biomass-gasification derived mixtures obtaining a syngas-rich stream thus opens new routes for biosyngas production and upgrading.}, language = {en} } @misc{GonzalezAriasTorresSempereGonzalezCastanoetal., author = {Gonzalez-Arias, Judith and Torres-Sempere, Guillermo and Gonzalez-Castano, Miriam and Baena-Moreno, Francisco Manuel and Ramirez Reina, Tomas}, title = {Hydrochar and synthetic natural gas co-production for a full circular economy implementation via hydrothermal carbonization and methanation: An economic approach}, series = {Journal of Environmental Sciences}, volume = {Vol. 140(2024)}, journal = {Journal of Environmental Sciences}, issn = {1878-7320}, doi = {10.1016/j.jes.2023.04.019}, pages = {69 -- 78}, abstract = {Herein we study the economic performance of hydrochar and synthetic natural gas co-production from olive tree pruning. The process entails a combination of hydrothermal carbonization and methanation. In a previous work, we evidenced that standalone hydrochar production via HTC results unprofitable. Hence, we propose a step forward on the process design by implementing a methanation, adding value to the gas effluent in an attempt to boost the overall process techno-economic aspects. Three different plant capacities were analyzed (312.5, 625 and 1250 kg/hr). The baseline scenarios showed that, under the current circumstances, our circular economy strategy in unprofitable. An analysis of the revenues shows that hydrochar selling price have a high impact on NPV and subsidies for renewable coal production could help to boost the profitability of the process. On the contrary, the analysis for natural gas prices reveals that prices 8 times higher than the current ones in Spain must be achieved to reach profitability. This seems unlikely even under the presence of a strong subsidy scheme. The costs analysis suggests that a remarkable electricity cost reduction or electricity consumption of the HTC stage could be a potential strategy to reach profitability scenarios. Furthermore, significant reduction of green hydrogen production costs is deemed instrumental to improve the economic performance of the process. These results show the formidable techno-economic challenge that our society faces in the path towards circular economy societies.}, language = {en} } @incollection{GonzalezCastanoTarifaMonzonetal., author = {Gonz{\´a}lez-Casta{\~n}o, Miriam and Tarifa, Pilar and Monzon, Antonio and Arellano-Garcia, Harvey}, title = {Valorization of unconventional CO2-rich feedstock via Reverse Water Gas Shift reaction}, series = {Circular Economy Processes for CO2 Capture and Utilization : Strategies and Case Studies}, booktitle = {Circular Economy Processes for CO2 Capture and Utilization : Strategies and Case Studies}, publisher = {Woodhead Publishing}, isbn = {9780323956697}, doi = {10.1016/B978-0-323-95668-0.00001-1}, pages = {307 -- 323}, abstract = {The implementation of novel CO2 valorization technologies is one of the most promising approaches towards the achievement of sustainable energy models. This chapter highlights the importance of carbon capture and utilization technologies and proposes novel approaches for the valorization of CO2-rich feedstock derived from thermochemical biomass conversion through the production of syngas mixtures via the Reverse Water Gas Shift reaction. After, this classification of the different types of nonconventional gases and biomass-treatment processes, we have also revised the fundamentals of the Reverse Water Gas Shift reaction and the impact of species commonly present in CO2-rich streams on the performance of the catalytic systems are also reviewed. Finally, a catalytic bi-functionalization approach that ensures larger CO productivity from simulated biomass-derived CO2-rich feedstock is demonstrated.}, language = {en} } @misc{TarifaGonzalezCastanoCazanaetal., author = {Tarifa, Pilar and Gonz{\´a}lez-Casta{\~n}o, Miriam and Caza{\~n}a, F. and Monz{\´o}n, Antonio and Arellano-Garc{\´i}a, Harvey}, title = {Development of one-pot Cu/cellulose derived carbon catalysts for RWGS reaction}, series = {Fuel}, volume = {Vol. 319}, journal = {Fuel}, issn = {0016-2361}, doi = {10.1016/j.fuel.2022.123707}, pages = {7}, abstract = {A series of Cu-based catalysts promoted with Fe, Ce and Al supported on cellulose derived carbon (CDC) was prepared by biomorphic mineralization technique for the RWGS reaction. The excellent Cu dispersions (7 nm at ca. 30 wt\% Cu) along with the resilience toward metal sintering attained in the entire catalysts series highlight one-pot decomposition of cellulose under reducing atmosphere as an excellent synthesis method which enable obtaining well-dispersed Cu nanoparticles. The influence of incorporating a second metal oxide over biomorphic mineralized Cu systems was also investigated. With the Cu-Ce system exhibiting the best catalyst performance of the catalysts' series, the enhanced catalyst performances were majorly ascribed to the catalysts redox properties. The lineal relationships stablished between oxygen exchange capacity and CO2 conversion rates remarks the employed sequential H2/CO2 cycles as an effective methodology for screening the catalytic performance of Cu catalysts for RWGS reaction.}, language = {en} } @misc{GonzalezCastanoMoralesNavarrodeMigueletal., author = {Gonzalez-Cast{\~a}no, Miriam and Morales, Carlos and Navarro de Miguel, Juan Carlos and Boelte, Jens H. and Klepel, Olaf and Flege, Jan Ingo and Arellano-Garc{\´i}a, Harvey}, title = {Are Ni/ and Ni5Fe1/biochar catalysts suitable for synthetic natural gas production? A comparison with γ-Al2O3 supported catalysts}, series = {Green Energy \& Environment}, volume = {8}, journal = {Green Energy \& Environment}, number = {3}, issn = {2468-0257}, doi = {10.1016/j.gee.2021.05.007}, pages = {744 -- 756}, abstract = {Among challenges implicit in the transition to the post-fossil fuel energetic model, the finite amount of resources available for the technological implementation of CO2 revalorizing processes arises as a central issue. The development of fully renewable catalytic systems with easier metal recovery strategies would promote the viability and sustainability of synthetic natural gas production circular routes. Taking Ni and NiFe catalysts supported over γ-Al2O3 oxide as reference materials, this work evaluates the potentiality of Ni and NiFe supported biochar catalysts for CO2 methanation. The development of competitive biochar catalysts was found dependent on the creation of basic sites on the catalyst surface. Displaying lower Turn Over Frequencies than Ni/Al catalyst, the absence of basic sites achieved over Ni/C catalyst was related to the depleted catalyst performances. For NiFe catalysts, analogous Ni5Fe1 alloys were constituted over both alumina and biochar supports. The highest specific activity of the catalyst series, exhibited by the NiFe/C catalyst, was related to the development of surface basic sites along with weaker NiFe-C interactions, which resulted in increased Ni0:NiO surface populations under reaction conditions. In summary, the present work establishes biochar supports as a competitive material to consider within the future low-carbon energetic panorama.}, language = {en} }