@misc{GonzalezCastanoGonzalezAriasBobadillaetal., author = {Gonzalez-Casta{\~n}o, Miriam and Gonzalez-Arias, Judith and Bobadilla, Luis F. and Ruiz-Lopez, E. and Odriozola, Jose Antonio and Arellano-Garc{\´i}a, Harvey}, title = {In-Situ Drifts Steady-State Study of Co2 and Co Methanation Over Ni-Promoted Catalysts}, series = {Fuel}, volume = {338}, journal = {Fuel}, issn = {1873-7153}, doi = {10.1016/j.fuel.2022.127241}, abstract = {Promoting the performance of catalytic systems by incorporating small amount of alkali has been proved effective for several reactions whilst controversial outcomes are reported for the synthetic natural gas production. This work studies a series of Ni catalysts for CO2 and CO methanation reactions. In-situ DRIFTS spectroscopy evidenced similar reaction intermediates for all evaluated systems and it is proposed a reaction mechanism based on: i) formate decomposition and ii) hydrogenation of lineal carbonyl species to methane. Compared to bare Ni, the enhanced CO2 methanation rates attained by NiFe/Al and NiFeK/Al systems are associated to promoted formates decomposition into lineal carbonyl species. Also for CO methanation, the differences in the catalysts' performances were associated to the relative concentration of lineal carbonyl species. Under CO methanation conditions and opposing the CO2 methanation results where the incorporation of K delivered promoted catalytic behaviours, worsened CO methanation rates were discerned for the NiFeK/Al system.}, language = {en} } @misc{TarifaRamirezReinaGonzalezCastanoetal., author = {Tarifa, Pilar and Ramirez Reina, Tomas and Gonz{\´a}lez-Casta{\~n}o, Miriam and Arellano-Garc{\´i}a, Harvey}, title = {Catalytic Upgrading of Biomass-Gasification Mixtures Using Ni-Fe/MgAl₂O₄ as a Bifunctional Catalyst}, series = {Energy and Fuels}, volume = {36}, journal = {Energy and Fuels}, number = {15}, issn = {1520-5029}, doi = {10.1021/acs.energyfuels.2c01452}, pages = {8267 -- 8273}, abstract = {Biomass gasification streams typically contain a mixture of CO, H2, CH4, and CO2 as the majority components and frequently require conditioning for downstream processes. Herein, we investigate the catalytic upgrading of surrogate biomass gasifiers through the generation of syngas. Seeking a bifunctional system capable of converting CO2 and CH4 to CO, a reverse water gas shift (RWGS) catalyst based on Fe/MgAl2O4 was decorated with an increasing content of Ni metal and evaluated for producing syngas using different feedstock compositions. This approach proved efficient for gas upgrading, and the incorporation of adequate Ni content increased the CO content by promoting the RWGS and dry reforming of methane (DRM) reactions. The larger CO productivity attained at high temperatures was intimately associated with the generation of FeNi3 alloys. Among the catalysts' series, Ni-rich catalysts favored the CO productivity in the presence of CH4, but important carbon deposition processes were noticed. On the contrary, 2Ni-Fe/MgAl2O4 resulted in a competitive and cost-effective system delivering large amounts of CO with almost no coke deposits. Overall, the incorporation of a suitable realistic application for valorization of variable composition of biomass-gasification derived mixtures obtaining a syngas-rich stream thus opens new routes for biosyngas production and upgrading.}, language = {en} } @misc{BobadillaAzancotLuqueAlvarezetal., author = {Bobadilla, Luis F. and Azancot, Lola and Luque-Alvarez, Ligia A. and Torres-Sempere, Guillermo and Gonzalez-Castano, Miriam and Pastor-Perez, Laura and Yu, Jie and Ramirez Reina, Tomas and Ivanova, Svetlana and Centeno, Miguel Angel and Odriozola, Jos{\´e} Antonio}, title = {Development of Power-to-X Catalytic Processes for CO2 Valorisation: From the Molecular Level to the Reactor Architecture}, series = {Chemistry}, volume = {4}, journal = {Chemistry}, number = {4}, issn = {2624-8549}, doi = {10.3390/chemistry4040083}, pages = {1250 -- 1280}, abstract = {Nowadays, global climate change is likely the most compelling problem mankind is facing. In this scenario, decarbonisation of the chemical industry is one of the global challenges that the scientific community needs to address in the immediate future. Catalysis and catalytic processes are called to play a decisive role in the transition to a more sustainable and low-carbon future. This critical review analyses the unique advantages of structured reactors (isothermicity, a wide range of residence times availability, complex geometries) with the multifunctional design of efficient catalysts to synthesise chemicals using CO2 and renewable H2 in a Power-to-X (PTX) strategy. Fine-chemistry synthetic methods and advanced in situ/operando techniques are essential to elucidate the changes of the catalysts during the studied reaction, thus gathering fundamental information about the active species and reaction mechanisms. Such information becomes crucial to refine the catalyst's formulation and boost the reaction's performance. On the other hand, reactors architecture allows flow pattern and temperature control, the management of strong thermal effects and the incorporation of specifically designed materials as catalytically active phases are expected to significantly contribute to the advance in the valorisation of CO2 in the form of high added-value products. From a general perspective, this paper aims to update the state of the art in Carbon Capture and Utilisation (CCU) and PTX concepts with emphasis on processes involving the transformation of CO2 into targeted fuels and platform chemicals, combining innovation from the point of view of both structured reactor design and multifunctional catalysts development.}, language = {en} } @misc{GonzalezAriasGonzalezCastanoArellanoGarcia, author = {Gonzalez-Arias, Judith and Gonzalez-Castano, Miriam and Arellano-Garc{\´i}a, Harvey}, title = {Utilization of CO2-Rich Residues for Syngas Production: Strategies for Catalyst Design}, series = {AIChE Annual Meeting, November 15, 2021}, journal = {AIChE Annual Meeting, November 15, 2021}, isbn = {978-0-8169-1116-5}, abstract = {Compared to a Reverse Water Gas Shift (RWGS) process carried out under ideal conditions, the valorization of CO2-rich residues involve additional challenges. Indeed, for an ideal RWGS reaction unit, the CO2 methanation reaction and the constitution of carbon deposits via Boudouard reaction are the main side reactions to take into consideration. For CO2-rich residues derived from biomass treatment and heavy metal industries, the presence of CH4 and CO species (among others) constitute an, although often disregarded, much complex panorama where side reactions like CO methanation, dry reforming of methane, the forward Water Gas Shift reaction and the decomposition of CO and CH4 resulting in carbon deposits, are occurring to some extent within the catalytic reactor. This work aimed at designing advanced catalytic systems capable of converting the CO2/CO/CH4 feedstocks into syngas mixtures. Thus, with the RWGS reaction considered as the major process, this work focusses on the side reactions involving CO/CH4 species. In this context, a series Cu-MnOx/Al2O3 spinel derived catalysts were optimized for syngas production in presence of CO and CH4 fractions. Once the optimal active phase was determined, the optimal Cu contents and the impact of the support nature (Al2O3, SiO2-Al2O3 and CeO2-Al2O3) was evaluated for the valorization of realistic CO2-rich feedstocks. Remarkably, the obtained outcomes underline operative strategies for developing catalytic systems with advanced implementation potential. For that aim, the catalyst design should present, along with an active and selective phase for RWGS reaction, superior cooking resistances, activities towards methane reforming and low tendencies towards the forward WGS reaction. Further developments should tackle difficult tasks like improving the RWGS reaction rate while inhibiting the forwards WGS reaction as well as improving the CH4 conversion to CO without affecting the process selectivity. Strategies towards advancing catalytic systems capable of operating under variable conditions also arise as appealing routes.}, language = {en} } @misc{TarifaGonzalezCastanoCazanaetal., author = {Tarifa, Pilar and Gonzalez-Castano, Miriam and Cazana, Fernando and Monzon, Antonio and Arellano-Garc{\´i}a, Harvey}, title = {Hydrophobic RWGS catalysts: valorization of CO2-rich streams in presence of CO/H2O}, series = {Catalysis Today}, volume = {Vol. 423}, journal = {Catalysis Today}, issn = {1873-4308}, doi = {10.1016/j.cattod.2023.114276}, abstract = {Nowadays, the majority of the Reverse Water Gas Shift (RWGS) studies assume somehow model feedstock (diluted CO2/H2) for syngas production. Nonetheless, biogas streams contain certain amounts of CO/H2O which will decrease the obtained CO2 conversion values by promoting the forward WGS reaction. Since the rate limiting step for the WGS reaction concerns the water splitting, this work proposes the use of hydrophobic RWGS catalysts as an effective strategy for the valorization of CO2-rich feedstock in presence of H2O and CO. Over Fe-Mg catalysts, the different hydrophilicities attained over pristine, N- and B-doped carbonaceous supports accounted for the impact on the activity of the catalyst in presence of CO/H2O. Overall, the higher CO productivity (4.12 μmol/(min·m2)) attained by Fe-Mg/CDC in presence of 20\% of H2O relates to hindered water adsorption and unveil the use of hydrophobic surfaces as a suitable approach for avoiding costly pre-conditioning units for the valorization of CO2-rich streams based on RWGS processes in presence of CO/H2O.}, language = {en} } @misc{GonzalezAriasTorresSempereGonzalezCastanoetal., author = {Gonzalez-Arias, Judith and Torres-Sempere, Guillermo and Gonzalez-Castano, Miriam and Baena-Moreno, Francisco Manuel and Ramirez Reina, Tomas}, title = {Hydrochar and synthetic natural gas co-production for a full circular economy implementation via hydrothermal carbonization and methanation: An economic approach}, series = {Journal of Environmental Sciences}, volume = {Vol. 140(2024)}, journal = {Journal of Environmental Sciences}, issn = {1878-7320}, doi = {10.1016/j.jes.2023.04.019}, pages = {69 -- 78}, abstract = {Herein we study the economic performance of hydrochar and synthetic natural gas co-production from olive tree pruning. The process entails a combination of hydrothermal carbonization and methanation. In a previous work, we evidenced that standalone hydrochar production via HTC results unprofitable. Hence, we propose a step forward on the process design by implementing a methanation, adding value to the gas effluent in an attempt to boost the overall process techno-economic aspects. Three different plant capacities were analyzed (312.5, 625 and 1250 kg/hr). The baseline scenarios showed that, under the current circumstances, our circular economy strategy in unprofitable. An analysis of the revenues shows that hydrochar selling price have a high impact on NPV and subsidies for renewable coal production could help to boost the profitability of the process. On the contrary, the analysis for natural gas prices reveals that prices 8 times higher than the current ones in Spain must be achieved to reach profitability. This seems unlikely even under the presence of a strong subsidy scheme. The costs analysis suggests that a remarkable electricity cost reduction or electricity consumption of the HTC stage could be a potential strategy to reach profitability scenarios. Furthermore, significant reduction of green hydrogen production costs is deemed instrumental to improve the economic performance of the process. These results show the formidable techno-economic challenge that our society faces in the path towards circular economy societies.}, language = {en} } @misc{JafariSafdarDorneanuetal., author = {Jafari, Mitra and Safdar, Muddasar and Dorneanu, Bogdan and Gonzalez-Casta{\~n}o, Miriam and Arellano-Garc{\´i}a, Harvey}, title = {Green and sustainable fuel from syngas via the Fischer-Tropsch synthesis process: Bifunctional cobalt-based catalysts}, series = {14th European Congress of Chemical Engineering and 7th European Congress of Applied Biotechnology}, journal = {14th European Congress of Chemical Engineering and 7th European Congress of Applied Biotechnology}, abstract = {This paper reviews and compares state-of-the-art cobalt-based catalysts and catalytic systems used to produce green and sustainable fuels using FTS. Being focused on comparing the effect of the catalyst formulation and synthesis method, the reactor type and operating parameters, as well as the quality of the obtained fuels, the aim is to identify the research gaps between these relevant research areas concerning production of green and sustainable fuels.}, language = {en} } @misc{GonzalezCastanoMoralesNavarrodeMigueletal., author = {Gonzalez-Cast{\~a}no, Miriam and Morales, Carlos and Navarro de Miguel, Juan Carlos and Boelte, Jens-H. and Klepel, Olaf and Flege, Jan Ingo and Arellano-Garc{\´i}a, Harvey}, title = {Are Ni/ and Ni5Fe1/biochar catalysts suitable for synthetic natural gas production? A comparison with γ-Al2O3 supported catalysts}, series = {Green Energy \& Environment}, volume = {8}, journal = {Green Energy \& Environment}, number = {3}, issn = {2468-0257}, doi = {10.1016/j.gee.2021.05.007}, pages = {744 -- 756}, abstract = {Among challenges implicit in the transition to the post-fossil fuel energetic model, the finite amount of resources available for the technological implementation of CO2 revalorizing processes arises as a central issue. The development of fully renewable catalytic systems with easier metal recovery strategies would promote the viability and sustainability of synthetic natural gas production circular routes. Taking Ni and NiFe catalysts supported over γ-Al2O3 oxide as reference materials, this work evaluates the potentiality of Ni and NiFe supported biochar catalysts for CO2 methanation. The development of competitive biochar catalysts was found dependent on the creation of basic sites on the catalyst surface. Displaying lower Turn Over Frequencies than Ni/Al catalyst, the absence of basic sites achieved over Ni/C catalyst was related to the depleted catalyst performances. For NiFe catalysts, analogous Ni5Fe1 alloys were constituted over both alumina and biochar supports. The highest specific activity of the catalyst series, exhibited by the NiFe/C catalyst, was related to the development of surface basic sites along with weaker NiFe-C interactions, which resulted in increased Ni0:NiO surface populations under reaction conditions. In summary, the present work establishes biochar supports as a competitive material to consider within the future low-carbon energetic panorama.}, language = {en} } @incollection{GonzalezCastanoTarifaMonzonetal., author = {Gonz{\´a}lez-Casta{\~n}o, Miriam and Tarifa, Pilar and Monzon, Antonio and Arellano-Garc{\´i}a, Harvey}, title = {Valorization of unconventional CO2-rich feedstock via Reverse Water Gas Shift reaction}, series = {Circular Economy Processes for CO2 Capture and Utilization : Strategies and Case Studies}, booktitle = {Circular Economy Processes for CO2 Capture and Utilization : Strategies and Case Studies}, publisher = {Woodhead Publishing}, isbn = {9780323956697}, doi = {10.1016/B978-0-323-95668-0.00001-1}, pages = {307 -- 323}, abstract = {The implementation of novel CO2 valorization technologies is one of the most promising approaches towards the achievement of sustainable energy models. This chapter highlights the importance of carbon capture and utilization technologies and proposes novel approaches for the valorization of CO2-rich feedstock derived from thermochemical biomass conversion through the production of syngas mixtures via the Reverse Water Gas Shift reaction. After, this classification of the different types of nonconventional gases and biomass-treatment processes, we have also revised the fundamentals of the Reverse Water Gas Shift reaction and the impact of species commonly present in CO2-rich streams on the performance of the catalytic systems are also reviewed. Finally, a catalytic bi-functionalization approach that ensures larger CO productivity from simulated biomass-derived CO2-rich feedstock is demonstrated.}, language = {en} }