@misc{GuentherMaussKlaueretal., author = {G{\"u}nther, Vivien and Mauß, Fabian and Klauer, Christian and Schlawitschek, Christiane}, title = {Kinetic Monte Carlo simulation of the epitaxial growth of Si(100)}, series = {Physica status solidi : C}, volume = {9}, journal = {Physica status solidi : C}, number = {10-11}, issn = {1610-1634}, pages = {1955 -- 1962}, language = {en} } @inproceedings{AslanjanKlauerGuentheretal., author = {Aslanjan, Jana and Klauer, Christian and G{\"u}nther, Vivien and Mauß, Fabian}, title = {On the Influence of Inlet Gas Variations and Gas Phase Chemistry in a Three-Way Catalyst}, series = {COMODIA - The Ninth International Conference on Modeling and Diagnostics for Advanced, July 25, 2017 - July 28, 2017}, booktitle = {COMODIA - The Ninth International Conference on Modeling and Diagnostics for Advanced, July 25, 2017 - July 28, 2017}, doi = {10.1299/jmsesdm.2017.9.A308}, abstract = {The conversion effects of a three-way catalyst are simulated in previous works using single and multiple representative channel approaches with detailed surface kinetic models. In addition, this article introduces global gas phase chemistry to the model. This allows reflecting ongoing reactions due to incomplete combustion products in low temperature regime. The 1D single-channel model representative for the catalyst is used here. Next to the comparison of the catalyst outlet emissions with and without gas phase chemistry, the transient temperature increase is simulated in order to model the catalysts light off temperature. Additionally, the transient inlet emissions are enhanced to show the influence of water and hydrogen on the modeling results. The heat transfer is modeled by wall heat losses to provide proper heat dissipation out of the catalyst. The modeling results show a good agreement to the experimental data with low computational cost.}, language = {en} } @misc{LeondeSyniawaSiddareddyOderetal., author = {Leon de Syniawa, Larisa and Siddareddy, Reddy Babu and Oder, Johannes and Franken, Tim and G{\"u}nther, Vivien and Rottengruber, Hermann and Mauß, Fabian}, title = {Real-Time Simulation of CNG Engine and After-Treatment System Cold Start. Part 2: Tail-Pipe Emissions Prediction Using a Detailed Chemistry Based MOC Model}, series = {SAE Technical Report}, journal = {SAE Technical Report}, issn = {2688-3627}, doi = {10.4271/2023-01-0364}, abstract = {In contrast to the currently primarily used liquid fuels (diesel and gasoline), methane (CH4) as a fuel offers a high potential for a significant reduction of greenhouse gas emissions (GHG). This advantage can only be used if tailpipe CH4 emissions are reduced to a minimum, since the GHG impact of CH4 in the atmosphere is higher than that of carbon dioxide (CO2). Three-way catalysts (TWC - stoichiometric combustion) and methane oxidation catalysts (MOC - lean combustion) can be used for post-engine CH4 oxidation. Both technologies allow for a nearly complete CH4 conversion to CO2 and water at sufficiently high exhaust temperatures (above the light-off temperature of the catalysts). However, CH4 combustion is facing a huge challenge with the planned introduction of Euro VII emissions standard, where stricter CH4 emission limits and a decrease of the cold start starting temperatures are discussed. The aim of the present study is to develop a reliable kinetic catalyst model for MOC conversion prediction in order to optimize the catalyst design in function of engine operation conditions, by combining the outputs from the predicted transient engine simulations as inputs to the catalyst model. Model development and training has been performed using experimental engine test bench data at stoichiometric conditions as well as engine simulation data and is able to reliably predict the major emissions under a broad range of operating conditions. Cold start (-7°C and +20°C) experiments were performed for a simplified worldwide light vehicle test procedure (WLTP) driving cycle using a prototype gas engine together with a MOC. For the catalyst simulations, a 1-D catalytic converter model was used. The model includes detailed gas and surface chemistry that are computed together with catalyst heat up. In a further step, a virtual transient engine cold start cycle is combined with the MOC model to predict tail-pipe emissions at transient operating conditions. This method allows to perform detailed emission investigations in an early stage of engine prototype development.}, language = {en} } @misc{RichterRachowIsraeletal., author = {Richter, Jana and Rachow, Fabian and Israel, Johannes and Roth, Norbert and Charlafti, Evgenia and G{\"u}nther, Vivien and Flege, Jan Ingo and Mauß, Fabian}, title = {Reaction Mechanism Development for Methane Steam Reforming on a Ni/Al2O3 Catalyst}, series = {Catalysts}, volume = {13}, journal = {Catalysts}, number = {5}, issn = {2073-4344}, doi = {10.3390/catal13050884}, pages = {23}, abstract = {In this work, a reliable kinetic reaction mechanism was revised to accurately reproduce the detailed reaction paths of steam reforming of methane over a Ni/Al2O3 catalyst. A steady-state fixed-bed reactor experiment and a 1D reactor catalyst model were utilized for this task. The distinctive feature of this experiment is the possibility to measure the axially resolved temperature profile of the catalyst bed, which makes the reaction kinetics inside the reactor visible. This allows for understanding the actual influence of the reaction kinetics on the system; while pure gas concentration measurements at the catalytic reactor outlet show near-equilibrium conditions, the inhere presented temperature profile shows that it is insufficient to base a reaction mechanism development on close equilibrium data. The new experimental data allow for achieving much higher quality in the modeling efforts. Additionally, by carefully controlling the available active surface via dilution in the experiment, it was possible to slow down the catalyst conversion rate, which helped during the adjustment of the reaction kinetics. To assess the accuracy of the revised mechanism, a monolith experiment from the literature was simulated. The results show that the fitted reaction mechanism was able to accurately predict the experimental outcomes for various inlet mass flows, temperatures, and steam-to-carbon ratios.}, language = {en} } @misc{LeondeSyniawaSiddareddyPrehnetal., author = {Leon de Syniawa, Larisa and Siddareddy, Reddy Babu and Prehn, Sascha and G{\"u}nther, Vivien and Franken, Tim and Buchholz, Bert and Mauß, Fabian}, title = {Simulation of CNG Engine in Agriculture Vehicles. Part 2: Coupled Engine and Exhaust Gas Aftertreatment Simulations Using a Detailed TWC Model}, series = {SAE Technical Paper}, journal = {SAE Technical Paper}, issn = {0148-7191}, doi = {10.4271/2023-24-0112}, abstract = {In more or less all aspects of life and in all sectors, there is a generalized global demand to reduce greenhouse gas (GHG) emissions, leading to the tightening and expansion of existing emissions regulations. Currently, non-road engines manufacturers are facing updates such as, among others, US Tier 5 (2028), European Stage V (2019/2020), and China Non-Road Stage IV (in phases between 2023 and 2026). For on-road applications, updates of Euro VII (2025), China VI (2021), and California Low NOx Program (2024) are planned. These new laws demand significant reductions in nitrogen oxides (NOx) and particulate matter (PM) emissions from heavy-duty vehicles. When equipped with an appropriate exhaust aftertreatment system, natural gas engines are a promising technology to meet the new emission standards. Gas engines require an appropriate aftertreatment technology to mitigate additional GHG releases as natural gas engines have challenges with methane (CH4) emissions that have 28 times more global warming potential compared to CO2. Under stoichiometric conditions a three-way catalytic converter (TWC - stoichiometric combustion) can be used to effectively reduce emissions of harmful pollutants such as nitrogen oxides and carbon monoxide (CO) as well as GHG like methane. The aim of the present study is to understand the performance of the catalytic converter in function of the engine operation and coolant temperature in order to optimize the catalyst operating conditions. Different cooling temperatures are chosen as the initial device temperature highly affects the level of warm up emissions such that low coolant temperatures entail high emissions. In order to investigate the catalyst performance, experimental and virtual transient engine emissions are coupled with a TWC model to predict tail-pipe emissions at transient operating conditions. Engine experiments are conducted at two initial engine coolant temperatures (10°C and 25°C) to study the effects on the Non-Road Transient Cycle (NRTC) emissions. Engine simulations of combustion and emissions with acceptable accuracy and with low computational effort are developed using the Stochastic Reactor Model (SRM). Catalyst simulations are performed using a 1D catalytic converter model including detailed gas and surface chemistry. The initial section covers essential aspects including the engine setup, definition of the engine test cycle, and the TWC properties and setup. Subsequently, the study introduces the transient SI-SRM, 1D catalyst model, and kinetic model for the TWC. The TWC model is used for the validation of a NRTC at different coolant temperatures (10°C and 25°C) during engine start. Moving forward, the next section includes the coupling of the TWC model with measured engine emissions. Finally, a virtual engine parameter variation has been performed and coupled with TWC simulations to investigate the performance of the engine beyond the experimental campaign. Various engine operating conditions (lambda variation for this paper) are virtually investigated, and the performance of the engine can be extrapolated. The presented virtual development approach allows comprehensive emission evaluations during the initial stages of engine prototype development}, language = {en} } @misc{RichterGuentherMauss, author = {Richter, Jana and G{\"u}nther, Vivien and Mauß, Fabian}, title = {Reaction mechanism development and investigation on the convergence influence in a 1D catalyst model for a γ-alumina stabilized three-way catalyst}, series = {The Proceedings of the International symposium on diagnostics and modeling of combustion in internal combustion engines}, journal = {The Proceedings of the International symposium on diagnostics and modeling of combustion in internal combustion engines}, issn = {2424-2918}, doi = {10.1299/jmsesdm.2022.10.A10-3}, abstract = {Accurate and computational cost-effective modeling tools for the optimization of processes and devices of all kinds are needed in nearly all scientific fields. While experimental optimization entails high expenses in terms of cost and time virtual optimization may be a promising alternative. In this work, the suitability and accuracy of a 1D heterogeneous catalytic model is investigated. First, the influence of cell discretization and residence time on the convergence in a 1D catalyst model are investigated. Second, the catalyst model is investigated and validated with use of a stoichiometric steady state three-way catalyst experiment. With the help of these investigations the reaction mechanism is further developed and new reaction rates for two reactions are presented. The modeling results are compared to a 2D simulation approach in terms of computational time and catalyst conversion behavior. The presented model is capable to capture the experimental results with a drastically reduced computational time in comparison to the 2D simulation presented in literature.}, language = {en} } @misc{AslanjanKlauerGuentheretal., author = {Aslanjan, Jana and Klauer, Christian and G{\"u}nther, Vivien and Mauß, Fabian}, title = {Development of a Physical Parameter Optimizer for 1D Catalyst Modeling on the Example of a Transient Three-Way Catalyst Experiment, 37th International Symposium on Combustion 2018, Dublin}, pages = {1}, abstract = {The importance of catalytic after-treatment for automotive emissions is not neglectable concerning current environmental protection discussions. A reasonable and time efficient catalyst model can help to reduce the necessity of time consuming experimental investigations on physical parameters for catalytic converter construction. It can further support the preparation of necessary experimental setups to analyze physical and chemical phenomena in catalysts. Physical parameter and/or chemical kinetic optimizers can be an advanced tool to support computational models in terms of adjustment to an experiment. In this work a physical parameter optimizer is developed and validated against a transient three-way catalyst experiment. The modeling results are compared to the measured data in terms of temperature and emission conversion behavior and show a good agreement.}, language = {en} } @misc{AslanjanKlauerGuentheretal., author = {Aslanjan, Jana and Klauer, Christian and G{\"u}nther, Vivien and Mauß, Fabian}, title = {Simulation of a three-way-catalyst using a transient multi-channel model}, pages = {S. 103}, abstract = {The importance to reduce automotive exhaust gas emissions is constantly increasing. Not only the country-specific laws are getting more stringent also the global increase of automobiles is requiring a responsible handling of the issue. The three-way-catalytic converter (TWC) is one of the most common catalysts for the engine exhaust gas after treatment. The reduction of CO, NO and unburned hydrocarbons is fulfilled via oxidation of carbon monoxide and hydrocarbons, and reduction of nitrogen oxides. These conversion effects were simulated in previous works using single channel approaches [e.g. Fr{\"o}jd/Mauss, SAE International 2011-01-1306] and detailed kinetic models [e.g Chatterjee et al., Faraday Discussions 119 (2001) 371-384 and Koop et al., Appl. Catal.B: Environmental 91 (2009), 47-58]. In this work multiple representative catalyst channels are used to take heat variations in between the catalyst into account. Each channel is split into a user given number of cells and each cell is treated like a perfectly stirred reactor (PSR). The simulation is validated against an experimental four-stroke engine setup with emission outputs fed into a TWC. Next to the emissions the transient temperature increase is simulated in order to model the catalyst light off temperature. The heat transfer is modelled by wall heat losses to provide a proper heat dissipation out of the catalyst. The simulation results show a good agreement to the experimental data with low computational cost.}, language = {en} } @misc{AslanjanKlauerPerlmanetal., author = {Aslanjan, Jana and Klauer, Christian and Perlman, Cathleen and G{\"u}nther, Vivien and Mauß, Fabian}, title = {Simulation of a Three-Way Catalyst Using Transient Single and Multi-Channel Models}, series = {SAE technical paper}, journal = {SAE technical paper}, number = {2017-01-0966}, issn = {0148-7191}, doi = {10.4271/2017-01-0966}, pages = {11 Seiten}, language = {en} } @misc{GuentherMauss, author = {G{\"u}nther, Vivien and Mauß, Fabian}, title = {Si(100)2×1 Epitaxy: A Kinetic Monte Carlo Simulation of the Surface Growth}, series = {Physics Procedia}, journal = {Physics Procedia}, number = {40}, issn = {1875-3892}, pages = {56 -- 64}, language = {en} } @misc{MuellerRachowGuentheretal., author = {M{\"u}ller, Klaus and Rachow, Fabian and G{\"u}nther, Vivien and Schmeißer, Dieter}, title = {Methanation of Coke Oven Gas with Nickel-based catalysts}, series = {International Journal of Environmental Science}, journal = {International Journal of Environmental Science}, number = {4}, issn = {2367-8941}, pages = {73 -- 79}, abstract = {For a complete transition from fossil to CO₂ neutral energy supply new energy storage concepts are needed that allow energy supply in times of absence of regenerative power production as during dark doldrums. A promising renewable energy storage approach is the power to gas (to power) technique based on the production of synthetic natural gas (also called e-methane) by methanation of CO₂ with H₂. The latter is usually produced by electrolysis. In any power to gas concept, electrolysis is a very critical part, due to its high costs, stability issues, or limited power of required electrolysers. As an alternative source of hydrogen, we investigate the methanation of coke oven gas (COG). COG is a byproduct of the carbon rich coke production from coal for the steel industry, with a high amount of hydrogen (~60vol\%). Coke oven gas furthermore contains CH₄(~25vol\%), CO (5-8vol\%), and CO₂(1-3vol\%), making it an attractive feedstock for the production of synthetic energy carriers like methane. In the present study, the authors investigate the direct conversion of CO and CO₂ from COG into e-methane. Compared to stoichiometric conversion, the COG hydrogen content is too high for catalytic methanation of CO₂. In order to achieve a higher methane yield, the addition of CO₂ from air, flue gas, or coal gasification can compensate the surplus of hydrogen in the coke oven gas. The process is evaluated by the conversion of CO and CO₂, the catalyst selectivity towards higher hydrocarbons for varying temperatures, and the CH₄ yield.}, language = {en} } @misc{RakhiShresthaGuentheretal., author = {Rakhi, Rakhi and Shrestha, Krishna Prasad and G{\"u}nther, Vivien and Mauß, Fabian}, title = {Thermodynamic analysis to develop a detailed surface reaction mechanism}, series = {Fuel Science - From Production to Propulsion, Aachen, Germany, May 2022}, journal = {Fuel Science - From Production to Propulsion, Aachen, Germany, May 2022}, pages = {2}, abstract = {The reduction of greenhouse gasses such as CO2 and CH4 is becoming necessary due to global environmental problems. The reforming of light hydrocarbons is a particularly efficient process for producing synthesis gas, H2 and CO, from greenhouse gasses [1]. The steam reforming of methane is the most important method to produce syngas in industry by using a nickel catalyst. Nickel-based catalysts are the conventional catalysts in industrial applications due to their fast turnover rates, good availability, and low costs, however, limited by their tendency towards coke formation. In this study, a detailed surface reaction mechanism is developed for steam reform-ing of methane over nickel and results are compared with the reference data.}, language = {en} } @misc{RakhiShresthaGuentheretal., author = {Rakhi, Rakhi and Shrestha, Krishna Prasad and G{\"u}nther, Vivien and Mauß, Fabian}, title = {Kinetically consistent detailed surface reaction mechanism for steam reforming of methane over nickel catalyst}, series = {Reaction Kinetics, Mechanisms and Catalysis}, volume = {135}, journal = {Reaction Kinetics, Mechanisms and Catalysis}, number = {6}, issn = {1878-5204}, doi = {10.1007/s11144-022-02314-7}, pages = {3059 -- 3083}, language = {en} } @misc{RakhiGuentherMauss, author = {Rakhi, Rakhi and G{\"u}nther, Vivien and Mauß, Fabian}, title = {A detailed surface reaction mechanism to investigate oxidation of methane over nickel catalyst}, series = {Proceedings in Applied Mathematics \& Mechanics : PAMM}, volume = {22}, journal = {Proceedings in Applied Mathematics \& Mechanics : PAMM}, number = {1}, issn = {1617-7061}, doi = {10.1002/pamm.202200055}, abstract = {We have developed a kinetically consistent detailed surface reaction mechanism for modeling the oxidation of methane over a nickel-based catalyst. A one-dimensional model, LOGEcat based on the single-channel 1D catalyst model, is used to perform the simulations. The original multi-step reaction mechanism is thermodynamically consistent and consists of 52 reactions. By thermodynamic consistency, we mean that the equilibrium is achieved with the support of the Arrhenius parameters and does not depend on the thermochemistry of the species involved in the considered reactions. The detailed mechanism developed in this investigation contains 26 reversible reactions. These reactions are obtained with the use of the thermochemistry of the species. The study focuses on ensuring kinetic consistency and this is done with the help of thermodynamic analysis by bringing the thermochemistry of the species in play in order to develop a surface reaction mechanism. The new mechanism can be used to understand the other processes, for example, steam- and dry-reforming of methane over nickel, however, the main focus of the paper is to check the performance of the detailed mechanism for catalytic partial oxidation of methane. The applicability of the mechanism is checked for various reactor conditions in terms of parameters such as temperature and pressure by comparing the results with the available reference data. The detailed mechanism developed in this study is able to accurately express oxidation of methane over the nickel catalyst for the considered reactor conditions.}, language = {en} } @misc{RakhiGiriGuentheretal., author = {Rakhi, Rakhi and Giri, Binod Raj and G{\"u}nther, Vivien and Mauss, Fabian}, title = {Investigation dry reforming of methane over nickel using a one-dimensional model}, series = {PAMM}, volume = {23}, journal = {PAMM}, number = {4}, doi = {10.1002/pamm.202300266}, pages = {8}, abstract = {In the field of catalysis, dry reforming, that is, methane reforming with CO2, is in the focus due to growing environmental concerns about oil depletion and global warming with a desire to produce synthesis gas. However, this process can lead to the formation of carbon, which can cause catalyst deactivation, especially at industrial conditions. Nevertheless, the key to develop a more coke-resistant catalyst is a better comprehension of the reforming process at a molecular level. Regardless of all the investigations available in literature, the detailed path for the conversion of methane to syngas and carbon remains a controversial issue. Another problem in setting up a reaction mechanism is the difficulty to define the thermodynamic data for intermediate surface species and this leads to the development of thermodynamic consistent surface reaction mechanisms in literature where the thermodynamic data are not used to calculate the rate coefficients of the reverse reactions. Rather the Arrhenius parameters for the forward as well as backward reactions are explicitly given in the reaction mechanism to establish thermodynamic equilibrium. In this investigation, a kinetically consistent detailed surface reaction mechanism is developed which consists of 26 reversible reactions with the help of a one-dimensional model, LOGEcat. Our previous work constructs the basis of the present investigation. Further, a detailed sensitivity analysis of reversible reactions and reaction pathways is performed to understand the mechanism better. The mechanism is validated for dry reforming of methane over nickel catalyst, however, it can also be used for other processes, such as, steam reforming and partial oxidation. The mechanism is tested by comparing the simulation results with the literature experiments and simulations in a wide range of temperature. The new developed kinetically consistent surface reaction mechanism is able to accurately express the dry reforming of methane over the nickel catalyst for complete range of temperature and also provide a useful insight into the key rate determining steps.}, language = {en} } @misc{RakhiGiriGuentheretal., author = {Rakhi, Rakhi and Giri, Binod Raj and G{\"u}nther, Vivien and Mauss, Fabian}, title = {Insight into the thermodynamic model for reforming of methane over nickel catalyst}, series = {Proceedings of the 64th International Conference of Scandinavian Simulation Society, SIMS 2023 V{\"a}ster{\aa}s, Sweden, September 25-28, 2023}, journal = {Proceedings of the 64th International Conference of Scandinavian Simulation Society, SIMS 2023 V{\"a}ster{\aa}s, Sweden, September 25-28, 2023}, doi = {10.3384/ecp200025}, pages = {192 -- 197}, abstract = {The reforming of light hydrocarbons to produce synthesis gas, H2 and CO, is an important intermediate for manufacturing valuable basic chemicals and synthesis fuels. In order to understand these reforming processes better, elementary step reaction mechanisms are developed. In the available literature, the surface reaction mechanisms are usually achieved with the help of reaction kinetic parameters without using the thermochemistry of the species referred to kinetic models due to the unavailability of the thermochemistry of the intermediate species involved in the multi-step reaction mechanism. In this work, investigations are made to obtain the thermochemistry of the intermediate species to establish thermodynamic equilibrium in order to develop a thermodynamic model for steam reforming of methane over nickel. The thermochemistry of the surface bound species is taken from different sources available in the literature and after that a detailed sensitivity analysis is performed to match the results with experiments. The simulation set up is adapted from the literature experiments given in [1]. The results produced with the one-dimensional tool using the thermodynamic model developed in the present investigation consisting of 21 reversible reactions are compared with the kinetic scheme with 42 irreversible reactions from reference simulation along with their experimental results. Both the models show some major differences in the reaction pathways which provides a useful insight into the key rate determining steps and needs further investigations.}, language = {en} } @misc{RakhiGuentherRichteretal., author = {Rakhi, Rakhi and G{\"u}nther, Vivien and Richter, Jana and Mauß, Fabian}, title = {Steam reforming of methane over nickel catalyst using a one-dimensional model}, series = {International Journal of Environmental Sciences}, volume = {5}, journal = {International Journal of Environmental Sciences}, number = {1}, issn = {2519-5549}, doi = {10.47604/ijes.1520}, pages = {1 -- 32}, abstract = {Steam reforming of hydrocarbons is a well established chemical process which provides synthesis gas (H2 and CO). These synthesis products can hence be converted to numerous valuable basic chemicals. For the industrial application of steam reforming, a detailed understanding of the process is a prerequisite. Models that capture the detailed homogeneous and heterogeneous reaction kinetics and the comprehensive transport processes as well as their interaction have the potential to optimize the catalytic process without expensive experimental campaigns. In this paper, a detailed investigation has been done using a multi-step reaction mechanism for modeling steam reforming of methane over nickel-based catalyst using a one-dimensional (1D) model, LOGEcat [1]. The model is applicable to the simulation of all standard after-treatment catalytic processes of combustion exhaust gas along with other chemical processes involving heterogeneous catalysis, such as, the Sabatier process [27]. It is a 1D tool, thus is computationally cost effective and is based on a series of perfectly stirred reactors (PSR). The model is used to perform the simulations for various reactor conditions in terms of temperature, pressure, flow rates and steam-to-carbon (S/C) ratio. Several chemical reaction terms, such as, selectivity, yield, conversion, and mole fraction have been shown with respect to the varied parameters and the results are compared with 2D simulations and experimental reference data. We report a very good agreement of the various profiles produced with 1D model as compared to the reference data. Note that the main aim of this study is to check how far the 1D model can capture the basic chemistry for modeling steam reforming of methane over nickel-based catalysts. It is interesting to note that the cost effective reduced order model is capable to capture the physics and chemistry involved with a multi-step reaction mechanism showing the predictive capability of the model. This study forms the basis for further analysis towards the thermochemistry of the species to develop a kinetically consistent reaction mechanism.}, language = {en} } @misc{RakhiGuentherMauss, author = {Rakhi, Rakhi and G{\"u}nther, Vivien and Mauß, Fabian}, title = {Insights into dry reforming of methane over nickel catalyst using a thermodynamic model}, series = {Reaction Kinetics, Mechanisms and Catalysis}, journal = {Reaction Kinetics, Mechanisms and Catalysis}, issn = {1878-5204}, doi = {10.1007/s11144-023-02426-8}, pages = {14}, abstract = {A thermodynamic model is developed using a one-dimensional model, LOGEcat to understand the dry reforming of methane over nickel-based catalysts. To do so, we have extended our previously developed mechanism (Rakhi and Shrestha in React Kinet, Mech Catal 135:3059-3083, 2022) which contains 21 reversible reactions by adding 5 more reversible reactions and updating the thermochemistry of one intermediate species. The adjusted mechanism contains 26 reversible reactions obtained with the help of thermodynamic analysis. This study focuses on using the thermodynamic model for dry reforming of methane and insights into the reaction pathways and sensitivity analysis for the kinetically consistent surface reaction mechanism. The applicability of the mechanism is examined for reactor conditions in terms of parameters such as temperature by comparing the results with the available reference data. The mechanism is able to accurately express the reforming conditions of methane over the nickel catalyst for complete range of temperature and also provide useful insights into the reaction pathways established with the thermodynamic model.}, language = {en} }