@misc{KalettaWipfFraschkeetal., author = {Kaletta, Udo Christian and Wipf, Christian and Fraschke, Mirko and Wolansky, Dirk and Schubert, Markus Andreas and Schroeder, Thomas and Wenger, Christian}, title = {AlN/SiO2/Si3N4/Si(100) based CMOS compatible surface acoustic wave filter with -12.8 dB minimum insertion loss}, series = {IEEE Transactions on Electron Devices}, volume = {62}, journal = {IEEE Transactions on Electron Devices}, number = {3}, issn = {0018-9383}, doi = {10.1109/TED.2015.2395443}, pages = {764 -- 768}, language = {en} } @misc{NiuCalkaWalczyketal., author = {Niu, Gang and Calka, Pauline and Walczyk, Christian and Guha, Subhajit and Fraschke, Mirko and Fr{\"o}hlich, K. and Hamoumou, Philippe and Gautier, Brice and Alff, Lambert and Schr{\"o}der, Thomas}, title = {Geometric conductive filament confinement by nanotips for resistive switching of HfO₂-RAM devices with high performance}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {25757}, issn = {2045-2322}, language = {en} } @misc{DoraiSwamyReddyPerezBaronietal., author = {Dorai Swamy Reddy, Keerthi and P{\´e}rez, Eduardo and Baroni, Andrea and Mahadevaiah, Mamathamba Kalishettyhalli and Marschmeyer, Steffen and Fraschke, Mirko and Lisker, Marco and Wenger, Christian and Mai, Andreas}, title = {Optimization of technology processes for enhanced CMOS-integrated 1T-1R RRAM device performance}, series = {The European Physical Journal B}, volume = {97}, journal = {The European Physical Journal B}, publisher = {Springer Science and Business Media LLC}, issn = {1434-6028}, doi = {10.1140/epjb/s10051-024-00821-1}, pages = {9}, abstract = {Implementing artificial synapses that emulate the synaptic behavior observed in the brain is one of the most critical requirements for neuromorphic computing. Resistive random-access memories (RRAM) have been proposed as a candidate for artificial synaptic devices. For this applicability, RRAM device performance depends on the technology used to fabricate the metal-insulator-metal (MIM) stack and the technology chosen for the selector device. To analyze these dependencies, the integrated RRAM devices in a 4k-bit array are studied on a 200 mm wafer scale in this work. The RRAM devices are integrated into two different CMOS transistor technologies of IHP, namely 250 nm and 130 nm and the devices are compared in terms of their pristine state current. The devices in 130 nm technology have shown lower number of high pristine state current devices per die in comparison to the 250 nm technology. For the 130 nm technology, the forming voltage is reduced due to the decrease of HfO2 dielectric thickness from 8 nm to 5 nm. Additionally, 5\% Al-doped 4 nm HfO2 dielectric displayed a similar reduction in forming voltage and a lower variation in the values. Finally, the multi-level switching between the dielectric layers in 250 nm and 130 nm technologies are compared, where 130 nm showed a more significant number of conductance levels of seven compared to only four levels observed in 250 nm technology.}, language = {en} }