@misc{PerezAvilaGonzalezCorderoPerezetal., author = {Perez-Avila, Antonio Javier and Gonzalez-Cordero, Gerardo and P{\´e}rez, Eduardo and Perez-Bosch Quesada, Emilio and Mahadevaiah, Mamathamba Kalishettyhalli and Wenger, Christian and Roldan, Juan Bautista and Jimenez-Molinos, Francisco}, title = {Behavioral modeling of multilevel HfO2-based memristors for neuromorphic circuit simulation}, series = {XXXV Conference on Design of Circuits and Integrated Systems (DCIS), Segovia, Spain}, journal = {XXXV Conference on Design of Circuits and Integrated Systems (DCIS), Segovia, Spain}, doi = {10.1109/DCIS51330.2020.9268652}, abstract = {An artificial neural network based on resistive switching memristors is implemented and simulated in LTspice. The influence of memristor variability and the reduction of the continuous range of synaptic weights into a discrete set of conductance levels is analyzed. To do so, a behavioral model is proposed for multilevel resistive switching memristors based on Al-doped HfO2 dielectrics, and it is implemented in a spice based circuit simulator. The model provides an accurate description of the conductance in the different conductive states in addition to describe the device-to-device variability}, language = {en} } @misc{PerezPerezAvilaRomeroZalizetal., author = {P{\´e}rez, Eduardo and P{\´e}rez-{\´A}vila, Antonio Javier and Romero-Zaliz, Roc{\´i}o and Mahadevaiah, Mamathamba Kalishettyhalli and P{\´e}rez-Bosch Quesada, Emilio and Roldan, Juan Bautista and Jim{\´e}nez-Molinos, Francisco and Wenger, Christian}, title = {Optimization of Multi-Level Operation in RRAM Arrays for In-Memory Computing}, series = {Electronics (MDPI)}, volume = {10}, journal = {Electronics (MDPI)}, number = {9}, issn = {2079-9292}, doi = {10.3390/electronics10091084}, pages = {15}, abstract = {Accomplishing multi-level programming in resistive random access memory (RRAM) arrays with truly discrete and linearly spaced conductive levels is crucial in order to implement synaptic weights in hardware-based neuromorphic systems. In this paper, we implemented this feature on 4-kbit 1T1R RRAM arrays by tuning the programming parameters of the multi-level incremental step pulse with verify algorithm (M-ISPVA). The optimized set of parameters was assessed by comparing its results with a non-optimized one. The optimized set of parameters proved to be an effective way to define non-overlapped conductive levels due to the strong reduction of the device-to-device variability as well as of the cycle-to-cycle variability, assessed by inter-levels switching tests and during 1k reset-set cycles. In order to evaluate this improvement in real scenarios, the experimental characteristics of the RRAM devices were captured by means of a behavioral model, which was used to simulate two different neuromorphic systems: an 8×8 vector-matrixmultiplication (VMM) accelerator and a 4-layer feedforward neural network for MNIST database recognition. The results clearly showed that the optimization of the programming parameters improved both the precision of VMM results as well as the recognition accuracy of the neural network in about 6\% compared with the use of non-optimized parameters.}, language = {en} } @misc{PerezBoschQuesadaRomeroZalizPerezetal., author = {P{\´e}rez-Bosch Quesada, Emilio and Romero-Zaliz, Roc{\´i}o and P{\´e}rez, Eduardo and Mahadevaiah, Mamathamba Kalishettyhalli and Reuben, John and Schubert, Markus Andreas and Jim{\´e}nez-Molinos, Francisco and Rold{\´a}n, Juan Bautista and Wenger, Christian}, title = {Toward Reliable Compact Modeling of Multilevel 1T-1R RRAM Devices for Neuromorphic Systems}, series = {Electronics (MDPI)}, volume = {10}, journal = {Electronics (MDPI)}, number = {6}, issn = {2079-9292}, doi = {10.3390/electronics10060645}, pages = {13}, abstract = {In this work, three different RRAM compact models implemented in Verilog-A are analyzed and evaluated in order to reproduce the multilevel approach based on the switching capability of experimental devices. These models are integrated in 1T-1R cells to control their analog behavior by means of the compliance current imposed by the NMOS select transistor. Four different resistance levels are simulated and assessed with experimental verification to account for their multilevel capability. Further, an Artificial Neural Network study is carried out to evaluate in a real scenario the viability of the multilevel approach under study.}, language = {en} } @misc{PechmannMaiVoelkeletal., author = {Pechmann, Stefan and Mai, Timo and V{\"o}lkel, Matthias and Mahadevaiah, Mamathamba Kalishettyhalli and P{\´e}rez, Eduardo and Perez-Bosch Quesada, Emilio and Reichenbach, Marc and Wenger, Christian and Hagelauer, Amelie}, title = {A Versatile, Voltage-Pulse Based Read and Programming Circuit for Multi-Level RRAM Cells}, series = {Electronics}, volume = {10}, journal = {Electronics}, number = {5}, issn = {2079-9292}, doi = {10.3390/electronics10050530}, pages = {17}, abstract = {In this work, we present an integrated read and programming circuit for Resistive Random Access Memory (RRAM) cells. Since there are a lot of different RRAM technologies in research and the process variations of this new memory technology often spread over a wide range of electrical properties, the proposed circuit focuses on versatility in order to be adaptable to different cell properties. The circuit is suitable for both read and programming operations based on voltage pulses of flexible length and height. The implemented read method is based on evaluating the voltage drop over a measurement resistor and can distinguish up to eight different states, which are coded in binary, thereby realizing a digitization of the analog memory value. The circuit was fabricated in the 130 nm CMOS process line of IHP. The simulations were done using a physics-based, multi-level RRAM model. The measurement results prove the functionality of the read circuit and the programming system and demonstrate that the read system can distinguish up to eight different states with an overall resistance ratio of 7.9.}, language = {en} } @misc{PerezMahadevaiahPerezBoschQuesadaetal., author = {P{\´e}rez, Eduardo and Mahadevaiah, Mamathamba Kalishettyhalli and Perez-Bosch Quesada, Emilio and Wenger, Christian}, title = {Variability and Energy Consumption Tradeoffs in Multilevel Programming of RRAM Arrays}, series = {IEEE Transactions on Electron Devices}, volume = {68}, journal = {IEEE Transactions on Electron Devices}, number = {6}, issn = {0018-9383}, doi = {10.1109/TED.2021.3072868}, pages = {2693 -- 2698}, abstract = {Achieving a reliable multi-level programming operation in resistive random access memory (RRAM) arrays is still a challenging task. In this work, we assessed the impact of the voltage step value used by the programming algorithm on the device-to-device (DTD) variability of the current distributions of four conductive levels and on the energy consumption featured by programming 4-kbit HfO2-based RRAM arrays. Two different write-verify algorithms were considered and compared, namely, the incremental gate voltage with verify algorithm (IGVVA) and the incremental step pulse with verify algorithm (ISPVA). By using the IGVVA, a main trade-off has to be taken into account since reducing the voltage step leads to a smaller DTD variability at the cost of a strong increase in the energy consumption. Although the ISPVA can not reduce the DTD variability as much as the IGVVA, its voltage step can be decreased in order to reduce the energy consumption with almost no impact on the DTD variability. Therefore, the final decision on which algorithm to employ should be based on the specific application targeted for the RRAM array.}, language = {en} } @misc{PerezBoschQuesadaPerezMahadevaiahetal., author = {Perez-Bosch Quesada, Emilio and P{\´e}rez, Eduardo and Mahadevaiah, Mamathamba Kalishettyhalli and Wenger, Christian}, title = {Memristive-based in-memory computing: from device to large-scale CMOS integration}, series = {Neuromorphic Computing and Engineering}, volume = {1}, journal = {Neuromorphic Computing and Engineering}, number = {2}, issn = {2634-4386}, doi = {10.1088/2634-4386/ac2cd4}, pages = {8}, abstract = {With the rapid emergence of in-memory computing systems based on memristive technology, the integration of such memory devices in large-scale architectures is one of the main aspects to tackle. In this work we present a study of HfO2-based memristive devices for their integration in large-scale CMOS systems, namely 200 mm wafers. The DC characteristics of single metal-insulator-metal devices are analyzed taking under consideration device-to-device variabilities and switching properties. Furthermore, the distribution of the leakage current levels in the pristine state of the samples are analyzed and correlated to the amount of formingless memristors found among the measured devices. Finally, the obtained results are fitted into a physic-based compact model that enables their integration into larger-scale simulation environments.}, language = {en} } @misc{BischoffLeisePerezBoschQuesadaetal., author = {Bischoff, Carl and Leise, Jakob and Perez-Bosch Quesada, Emilio and P{\´e}rez, Eduardo and Wenger, Christian and Kloes, Alexander}, title = {Implementation of device-to-device and cycle-to-cycle variability of memristive devices in circuit simulations}, series = {Solid-State Electronics}, volume = {194}, journal = {Solid-State Electronics}, issn = {0038-1101}, doi = {10.1016/j.sse.2022.108321}, pages = {4}, abstract = {We present a statistical procedure for the extraction of parameters of a compact model for memristive devices. Thereby, in a circuit simulation the typical fluctuations of the current-voltage (I-V) characteristics from device-to-device (D2D) and from cycle-to-cycle (C2C) can be emulated. The approach is based on the Stanford model whose parameters play a key role to integrating D2D and C2C dispersion. The influence of such variabilities over the model's parameters is investigated by using a fitting algorithm fed with experimental data. After this, the statistical distributions of the parameters are used in a Monte Carlo simulation to reproduce the I-V D2D and C2C dispersions which show a good agreement to the measured curves. The results allow the simulation of the on/off current variation for the design of RRAM cells or memristor-based artificial neural networks.}, language = {en} } @misc{MahadevaiahPerezLiskeretal., author = {Mahadevaiah, Mamathamba Kalishettyhalli and P{\´e}rez, Eduardo and Lisker, Marco and Schubert, Markus Andreas and Perez-Bosch Quesada, Emilio and Wenger, Christian and Mai, Andreas}, title = {Modulating the Filamentary-Based Resistive Switching Properties of HfO2 Memristive Devices by Adding Al2O3 Layers}, series = {Electronics : open access journal}, volume = {11}, journal = {Electronics : open access journal}, number = {10}, issn = {2079-9292}, doi = {10.3390/electronics11101540}, pages = {14}, abstract = {The resistive switching properties of HfO2 based 1T-1R memristive devices are electrically modified by adding ultra-thin layers of Al2O3 into the memristive device. Three different types of memristive stacks are fabricated in the 130 nm CMOS technology of IHP. The switching properties of the memristive devices are discussed with respect to forming voltages, low resistance state and high resistance state characteristics and their variabilities. The experimental I-V characteristics of set and reset operations are evaluated by using the quantum point contact model. The properties of the conduction filament in the on and off states of the memristive devices are discussed with respect to the model parameters obtained from the QPC fit.}, language = {en} } @misc{PerezMahadevaiahPerezBoschQuesadaetal., author = {P{\´e}rez, Eduardo and Mahadevaiah, Mamathamba Kalishettyhalli and Perez-Bosch Quesada, Emilio and Wenger, Christian}, title = {In-depth characterization of switching dynamics in amorphous HfO2 memristive arrays for the implementation of synaptic updating rules}, series = {Japanese Journal of Applied Physics}, volume = {61}, journal = {Japanese Journal of Applied Physics}, issn = {0021-4922}, doi = {10.35848/1347-4065/ac6a3b}, pages = {1 -- 7}, abstract = {Accomplishing truly analog conductance modulation in memristive arrays is crucial in order to implement the synaptic plasticity in hardware-based neuromorphic systems. In this paper, such a feature was addressed by exploiting the inherent stochasticity of switching dynamics in amorphous HfO2 technology. A thorough statistical analysis of experimental characteristics measured in 4 kbit arrays by using trains of identical depression/potentiation pulses with different voltage amplitudes and pulse widths provided the key to develop two different updating rules and to define their optimal programming parameters. The first rule is based on applying a specific number of identical pulses until the conductance value achieves the desired level. The second one utilized only one single pulse with a particular amplitude to achieve the targeted conductance level. In addition, all the results provided by the statistical analysis performed may play an important role in understanding better the switching behavior of this particular technology.}, language = {en} } @misc{BogunPerezBoschQuesadaPerezetal., author = {Bogun, Nicolas and Perez-Bosch Quesada, Emilio and P{\´e}rez, Eduardo and Wenger, Christian and Kloes, Alexander and Schwarz, Mike}, title = {Analytical Calculation of Inference in Memristor-based Stochastic Artificial Neural Networks}, series = {29th International Conference on Mixed Design of Integrated Circuits and System (MIXDES), 23-24 June 2022 , Wrocław, Poland}, journal = {29th International Conference on Mixed Design of Integrated Circuits and System (MIXDES), 23-24 June 2022 , Wrocław, Poland}, isbn = {978-83-63578-22-0}, doi = {10.23919/MIXDES55591.2022.9838321}, pages = {83 -- 88}, abstract = {The impact of artificial intelligence on human life has increased significantly in recent years. However, as the complexity of problems rose aswell, increasing system features for such amount of data computation became troublesome due to the von Neumann's computer architecture. Neuromorphic computing aims to solve this problem by mimicking the parallel computation of a human brain. For this approach, memristive devices are used to emulate the synapses of a human brain. Yet, common simulations of hardware based networks require time consuming Monte-Carlo simulations to take into account the stochastic switching of memristive devices. This work presents an alternative concept making use of the convolution of the probability distribution functions (PDF) of memristor currents by its equivalent multiplication in Fourier domain. An artificial neural network is accordingly implemented to perform the inference stage with handwritten digits.}, language = {en} }