@misc{MonsonLignellFinneyetal., author = {Monson, Elizabeth I. and Lignell, David O. and Finney, Mark A. and Jozefik, Zoltan and Kerstein, Alan R. and Hintze, Ryan S.}, title = {Simulation of an ethylene wall fire using the spatially-evolving one-dimensional turbulence model}, series = {Fire Technology, Special Issue on Validation and Fire Modeling}, volume = {52}, journal = {Fire Technology, Special Issue on Validation and Fire Modeling}, number = {1}, issn = {1572-8099}, doi = {10.1007/s10694-014-0441-2}, pages = {176 -- 196}, language = {en} } @misc{KleinLignellSchmidt, author = {Klein, Marten and Lignell, David O. and Schmidt, Heiko}, title = {Map-Based Modeling of Turbulent Convection: Application of the One-Dimensional Turbulence Model to Planar and Spherical Geometries}, pages = {1}, language = {en} } @misc{MedinaMendezSchmidtLignell, author = {Medina M{\´e}ndez, Juan Ali and Schmidt, Heiko and Lignell, David O.}, title = {Application of the One-Dimensional Turbulence model to incompressible channel and pipe flow}, series = {Publications Turbulent Reacting Flow Research Dr. David Lignell, Brigham Young University}, journal = {Publications Turbulent Reacting Flow Research Dr. David Lignell, Brigham Young University}, pages = {24}, language = {en} } @misc{StarickLignellSchmidt, author = {Starick, Tommy and Lignell, David O. and Schmidt, Heiko}, title = {One-Dimensional Turbulence Modelling of a Lifted Methane/Air Jet Flame in a Vitiated Coflow}, series = {Proc. of the 11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11)Southampton, UK, July 30 to August 2, 2019}, journal = {Proc. of the 11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11)Southampton, UK, July 30 to August 2, 2019}, pages = {6}, abstract = {The present preliminary numerical study investigates alifted methane/air jet flame in a vitiated coflow by meansof the map-based, stochastic One-Dimensional Turbulence(ODT) model. In the considered configuration, a jet flameissues from a central nozzle into a vitiated coflow of hotcombustion products from an array of lean H2/air flames.Centreline profiles for mixture fraction, temperature andmass fraction of O2and OH obtained from ODT simula-tions with a planar and cylindrical formulation are shownand compared to measurements from Cabraet al.(2005).Additionally, two-dimensional renderings of the jet flameand scatter plots of temperature versus mixture fraction andOH mass fraction versus mixture fraction are provided. Al-though the application of ODT for reactive flows in jet con-figurations is not novel, the chosen lifted jet flame in a vi-tiated coflow represents a challenge for the model. The ac-curate representation of the subtle interactions of the hotcoflow products with the cold unburnt jet flow are crucialfor the reaction and autoignition of the jet (Cabraet al.,2005). Considering the reduced order of the model and thetaken assumptions, the achieved results reasonably matchwith the measurement data.}, language = {en} } @misc{StarickLignellSchmidt, author = {Starick, Tommy and Lignell, David O. and Schmidt, Heiko}, title = {Towards a Simple Mixing Model for Passive Scalar Transport Using Hierarchical Parcel Swapping (HIPS)}, series = {17th European Turbulence Conference (ETC2019), 3-6 September 2019, Torino, IT}, journal = {17th European Turbulence Conference (ETC2019), 3-6 September 2019, Torino, IT}, pages = {1}, language = {en} } @misc{KleinLignellSchmidt, author = {Klein, Marten and Lignell, David O. and Schmidt, Heiko}, title = {MS404: Map-based stochastic methods for accurate modeling of turbulent heat and mass transfer}, series = {14th World Congress on Computational Mechanics (WCCM XIV) ; 8th European Congress on Computational Methods in Applied Science and Engineering (ECCOMAS 2020), July 19-24, 2020, Paris, France}, journal = {14th World Congress on Computational Mechanics (WCCM XIV) ; 8th European Congress on Computational Methods in Applied Science and Engineering (ECCOMAS 2020), July 19-24, 2020, Paris, France}, pages = {1}, language = {en} } @misc{StarickLignellSchmidt, author = {Starick, Tommy and Lignell, David O. and Schmidt, Heiko}, title = {Stochastic Modeling of a Lifted Methane/Air Jet Flame with Detailed Chemistry}, series = {91th Annual Meeting of the International Association of Applied Mathematics and Mechanics March 15-19, 2020 Kassel, DE}, journal = {91th Annual Meeting of the International Association of Applied Mathematics and Mechanics March 15-19, 2020 Kassel, DE}, pages = {1}, language = {en} } @misc{KleinLignellSchmidt, author = {Klein, Marten and Lignell, David O. and Schmidt, Heiko}, title = {Stochastic modeling of transient surface scalar and momentum fluxes in turbulent boundary layers}, series = {EMS Annual Meeting 2021, online, 6-10 Sep 2021, EMS2021-79}, journal = {EMS Annual Meeting 2021, online, 6-10 Sep 2021, EMS2021-79}, doi = {10.5194/ems2021-79}, abstract = {Turbulence is ubiquitous in atmospheric boundary layers and manifests itself by transient transport processes on a range of scales. This range easily reaches down to less than a meter, which is smaller than the typical height of the first grid cell layer adjacent to the surface in numerical models for weather and climate prediction. In these models, the bulk-surface coupling plays an important role for the evolution of the atmosphere but it is not feasible to fully resolve it in applications. Hence, the overall quality of numerical weather and climate predictions crucially depends on the modeling of subfilter-scale transport processes near the surface. A standing challenge in this regard is the robust but efficient representation of transient and non-Fickian transport such as counter-gradient fluxes that arise from stratification and rotation effects. We address the issues mentioned above by utilizing a stochastic one-dimensional turbulence (ODT) model. For turbulent boundary layers, ODT aims to resolve the wall-normal transport processes on all relevant scales but only along a single one-dimensional domain (column) that is aligned with the vertical. Molecular diffusion and unbalanced Coriolis forces are directly resolved, whereas effects of turbulent advection and stratification are modeled by stochastically sampled sequence of mapping (eddy) events. Each of these events instantaneously modifies the flow profiles by a permutation of fluid parcels across a selected size interval. The model is of lower order but obeys fundamental conservation principles and Richardson's 1/4 law by construction. In this study, ODT is applied as stand-alone tool in order to investigate nondimensional control parameter dependencies of the scalar and momentum transport in turbulent channel, neutral, and stably-stratified Ekman flows up to (friction) Reynolds number Re = O(104). We demonstrate that ODT is able to capture the state-space statistics of transient surface fluxes as well as the boundary-layer structure and nondimensional control parameter dependencies of low-order flow statistics. Very good to reasonable agreement with available reference data is obtained for various observables using fixed model set-ups. We conclude that ODT is an economical turbulence model that is able to not only capture but also predict the wall-normal transport and surface fluxes in multiphysics turbulent boundary layers.}, language = {en} } @misc{KleinSchmidtLignell, author = {Klein, Marten and Schmidt, Heiko and Lignell, David O.}, title = {Stochastic modeling of surface scalar-flux fluctuations in turbulent channel flow using one-dimensional turbulence}, series = {International Journal of Heat and Fluid Flow}, volume = {93 (2022)}, journal = {International Journal of Heat and Fluid Flow}, issn = {0142-727X}, doi = {10.1016/j.ijheatfluidflow.2021.108889}, pages = {1 -- 19}, abstract = {Accurate and economical modeling of near-surface transport processes is a standing challenge for various engineering and atmospheric boundary-layer flows. In this paper, we address this challenge by utilizing a stochastic one-dimensional turbulence (ODT) model. ODT aims to resolve all relevant scales of a turbulent flow for a one-dimensional domain. Here ODT is applied to turbulent channel flow as stand-alone tool. The ODT domain is a wall-normal line that is aligned with the mean shear. The free model parameters are calibrated once for the turbulent velocity boundary layer at a fixed Reynolds number. After that, we use ODT to investigate the Schmidt (Sc), Reynolds (Re), and Peclet (Pe) number dependence of the scalar boundary-layer structure, turbulent fluctuations, transient surface fluxes, mixing, and transfer to a wall. We demonstrate that the model is able to resolve relevant wall-normal transport processes across the turbulent boundary layer and that it captures state-space statistics of the surface scalar-flux fluctuations. In addition, we show that the predicted mean scalar transfer, which is quantified by the Sherwood (Sh) number, self-consistently reproduces established scaling regimes and asymptotic relations. For high asymptotic Sc and Re, ODT results fall between the Dittus-Boelter, Sh ∼ Re^(4/5) Sc^(2/5), and Colburn, Sh ∼ Re^(4/5) Sc^(1/3), scalings but they are closer to the former. For finite Sc and Re, the model prediction reproduces the relation proposed by Schwertfirm and Manhart (Int. J. Heat Fluid Flow, vol. 28, pp. 1204-1214, 2007) that yields locally steeper effective scalings than any of the established asymptotic relations. The model extrapolates the scalar transfer to small asymptotic Sc ≪ Re_τ^(-1) (diffusive limit) with a functional form that has not been previously described.}, language = {en} } @misc{KersteinLignellSchmidtetal., author = {Kerstein, Alan R. and Lignell, David O. and Schmidt, Heiko and Starick, Tommy and Wheeler, Isaac and Behrang, Masoomeh}, title = {Using Hips As a New Mixing Model to Study Differential Diffusion of Scalar Mixing in Turbulent Flows}, series = {2021 AIChE Annual Meeting}, journal = {2021 AIChE Annual Meeting}, abstract = {Mixing two or more streams is ubiquitous in chemical processes and industries involving turbulent liquid or gaseous flows. Modeling turbulent mixing flows is complicated due to a wide range of time and length scales, and non-linear processes, especially when reaction is involved. On the other hand, in turbulent reacting flows, sub-grid scales need to be resolved accurately because they involve reactive and diffusive transport processes. Transported PDF methods use mixing models to capture the interaction in the sub-grid scales. Several models have been used with varying success. In this study, we present a novel model for simulation of turbulent mixing called Hierarchical Parcel Swapping (HiPS). The HiPS model is a stochastic mixing model that resolves a full range of time and length scales with the reduction in the complexity of modeling turbulent reacting flows. This model can be used as a sub-grid mixing model in PDF transport methods, as well as a standalone model. HiPS can be applied to transported scalars with variable Schmidt numbers to capture the effect of differential diffusion which is important for modeling scalars with low diffusivity like soot. We present an overview of the HiPS model, its formulation for variable Schmidt number flows, and then present results for evaluating the turbulence properties including the scalar energy spectra, the scalar dissipation rate, and Richardson dispersion. These model developments are an important step in applying HiPS to more complex flow configurations.}, language = {en} } @misc{StarickLignellSchmidt, author = {Starick, Tommy and Lignell, David O. and Schmidt, Heiko}, title = {Stochastic Modeling of a Lifted Methane/Air Jet Flame with Detailed Chemistry}, series = {Proceedings in Applied Mathematics \& Mechanics}, volume = {20}, journal = {Proceedings in Applied Mathematics \& Mechanics}, number = {1}, issn = {1617-7061}, doi = {10.1002/pamm.202000316}, pages = {3}, abstract = {This preliminary numerical study investigates a lifted methane/air jet flame in a vitiated coflow by means of the One-Dimensional Turbulence (ODT) model. In the considered Cabra Burner configuration [Combust. Flame 143 491-506 (2005)], a jet flame issues from a central nozzle into a vitiated coflow of hot combustion products from lean premixed hydrogen/air flames. ODT is a map-based model for turbulent flow simulations which uses a stochastic formulation for the turbulent advection. The diffusion and reaction effects along the one-dimensional domain are considered by temporally advancing deterministic evolution equations. ODT simulations are performed with a representation of the methane/air chemistry by a detailed 53-species mechanism with 325 reactions. In this work, we present centerline profile of temperature and species concentrations obtained from ODT simulations using a cylindrical ODT-formulation. Additionally, a two-dimensional rendering of the temperature distribution is shown. Although the simulation of reactive jet configurations by means of ODT is not novel, the complex stabilization region depending on the flow conditions represents a challenge for the model. Considering the reduced order of the model, ODT is able to predict the flow characteristics and reasonably matches the existing experimental data.}, language = {en} } @misc{StarickLignellSchmidt, author = {Starick, Tommy and Lignell, David O. and Schmidt, Heiko}, title = {Stochastic Modeling of a Lifted Methane/Air Jet Flame with Detailed Chemistry}, series = {91th Annual Meeting of the International Association of Applied Mathematics and Mechanics March 15-19, 2021 Kassel, DE}, journal = {91th Annual Meeting of the International Association of Applied Mathematics and Mechanics March 15-19, 2021 Kassel, DE}, doi = {10.1002/pamm.202100237}, pages = {3}, language = {en} } @misc{StarickBehrangLignelletal., author = {Starick, Tommy and Behrang, Masoomeh and Lignell, David O. and Schmidt, Heiko and Kerstein, Alan R.}, title = {Turbulent mixing simulation using the Hierarchical Parcel-Swapping (HiPS) model}, series = {Technische Mechanik}, volume = {43}, journal = {Technische Mechanik}, number = {1}, issn = {0232-3869}, doi = {10.24352/UB.OVGU-2023-044}, pages = {49 -- 58}, abstract = {Turbulent mixing is an omnipresent phenomenon that permanently affects our everyday life. Mixing processes also plays an important role in many industrial applications. The full resolution of all relevant flow scales often poses a major challenge to the numerical simulation and requires a modeling of the small-scale effects. In transported Probability Density Function (PDF) methods, the simplified modeling of the molecular mixing is a known weak point. At this place, the Hierarchical Parcel-Swapping (HiPS) model developed by A.R. Kerstein [J. Stat. Phys. 153, 142-161 (2013)] represents a computationally efficient and novel turbulent mixing model. HiPS simulates the effects of turbulence on time-evolving, diffusive scalar fields. The interpretation of the diffusive scalar fields or a state space as a binary tree structure is an alternative approach compared to existing mixing models. The characteristic feature of HiPS is that every level of the tree corresponds to a specific length and time scale, which is based on turbulence inertial range scaling. The state variables only reside at the base of the tree and are understood as fluid parcels. The effects of turbulent advection are represented by stochastic swaps of sub-trees at rates determined by turbulent time scales associated with the sub-trees. The mixing of adjacent fluid parcels is done at rates consistent with the prevailing diffusion time scales. In this work, a standalone HiPS model formulation for the simulation of passive scalar mixing is detailed first. The generated scalar power spectra with forced turbulence shows the known scaling law of Kolmogorov turbulence. Furthermore, results for the PDF of the passive scalar, mean square displacement and scalar dissipation rate are shown and reveal a reasonable agreement with experimental findings. The described possibility to account for variable Schmidt number effects is an important next development step for the HiPS formulation. This enables the incorporation of differential diffusion, which represents an immense advantage compared to the established mixing models. Using a binary structure allows HiPS to satisfy a large number of criteria for a good mixing model. Considering the reduced order and associated computational efficiency, HiPS is an attractive mixing model, which can contribute to an improved representation of the molecular mixing in transported PDF methods.}, language = {en} } @inproceedings{KleinSchmidtLignell, author = {Klein, Marten and Schmidt, Heiko and Lignell, David O.}, title = {Map-based modelling of high-Rayleigh-number turbulent convection in planar and spherical confinements}, series = {Conference on Modelling Fluid Flow (CMFF'18), The 17th International Conference on Fluid Flow Technologies Budapest, Hungary, September 4-7, 2018}, booktitle = {Conference on Modelling Fluid Flow (CMFF'18), The 17th International Conference on Fluid Flow Technologies Budapest, Hungary, September 4-7, 2018}, pages = {8}, abstract = {High-Rayleigh-number (high-Ra) turbulent convection is studied in planar and spherical confinement geometries using the One-Dimensional turbulence (ODT) model. ODT uses stochastic mapping events to model the effect of turbulent stirring along a representative line through the turbulent flow. Here, a new implementation of ODT is used which includes radial transport, buoyancy, and position-dependent gravity. Model parameters are optimised for air in a planar confinement with Ra = 3 x 10¹⁰ . The thermal and viscous boundary layers are found in very good agreement with reference data, especially in the vicinity of the wall, but also towards the bulk. In spherical geometry, the same model parameters yield systematically thicker boundary layers compared to the references. This was observed for various radius ratios, gravity profiles and Rayleigh numbers. Nevertheless, the bulk temperature and the asymmetry of the inner and outer boundary layers are captured by ODT. The results obtained suggests that ODT is mainly applicable for Ra ̰̰> 10⁷, and that optimal model parameters depend on the radius ratio.}, language = {en} } @misc{LignellLansingerMedinaMendezetal., author = {Lignell, David O. and Lansinger, Victoria B. and Medina M{\´e}ndez, Juan Ali and Klein, Marten and Kerstein, Alan R. and Schmidt, Heiko and Fistler, Marco and Oevermann, Michael}, title = {One-dimensional turbulence modeling for cylindrical and spherical flows: model formulation and application}, series = {Theoretical and Computational Fluid Dynamics}, volume = {32}, journal = {Theoretical and Computational Fluid Dynamics}, number = {4}, issn = {0935-4964}, doi = {10.1007/s00162-018-0465-1}, pages = {495 -- 520}, abstract = {The one-dimensional turbulence (ODT) model resolves a full range of time and length scales and is computationally efficient. ODT has been applied to a wide range of complex multi-scale flows, such as turbulent combustion. Previous ODT comparisons to experimental data have focused mainly on planar flows. Applications to cylindrical flows, such as round jets, have been based on rough analogies, e.g., by exploiting the fortuitous consistency of the similarity scalings of temporally developing planar jets and spatially developing round jets. To obtain a more systematic treatment, a new formulation of the ODT model in cylindrical and spherical coordinates is presented here. The model is written in terms of a geometric factor so that planar, cylindrical, and spherical configurations are represented in the same way. Temporal and spatial versions of the model are presented. A Lagrangian finite-volume implementation is used with a dynamically adaptive mesh. The adaptive mesh facilitates the implementation of cylindrical and spherical versions of the triplet map, which is used to model turbulent advection (eddy events) in the one-dimensional flow coordinate. In cylindrical and spherical coordinates, geometric stretching of the three triplet map images occurs due to the radial dependence of volume, with the stretching being strongest near the centerline. Two triplet map variants, TMA and TMB, are presented. In TMA, the three map images have the same volume, but different radial segment lengths. In TMB, the three map images have the same radial segment lengths, but different segment volumes. Cylindrical results are presented for temporal pipe flow, a spatial nonreacting jet, and a spatial nonreacting jet flame. These results compare very well to direct numerical simulation for the pipe flow, and to experimental data for the jets. The nonreacting jet treatment overpredicts velocity fluctuations near the centerline, due to the geometric stretching of the triplet maps and its effect on the eddy event rate distribution. TMB performs better than TMA. A hybrid planar-TMB (PTMB) approach is also presented, which further improves the results. TMA, TMB, and PTMB are nearly identical in the pipe flow where the key dynamics occur near the wall away from the centerline. The jet flame illustrates effects of variable density and viscosity, including dilatational effects.}, language = {en} } @misc{KleinFreireLignelletal., author = {Klein, Marten and Freire, Livia S. and Lignell, David O. and Kerstein, Alan R. and Schmidt, Heiko}, title = {Ein stochastischer Ansatz zur Modellierung fluktuierender Oberfl{\"a}chenfl{\"u}sse in turbulenten Grenzschichten}, series = {Kurzfassungen der Meteorologentagung DACH}, volume = {2022}, journal = {Kurzfassungen der Meteorologentagung DACH}, publisher = {Copernicus}, doi = {10.5194/dach2022-22}, pages = {1 -- 1}, abstract = {Im Konferenzbeitrag wird auf die Formulierung des stochastischen Modells eingegangen und gezeigt, dass neben Scherspannungen auch Druck-, Coriolis- und Auftriebskr{\"a}fte ber{\"u}cksichtigt werden k{\"o}nnen. Das Modell wird beispielhaft als unabh{\"a}ngiges, numerisches Werkzeug angewendet, um fluktuierende Oberfl{\"a}chenfl{\"u}sse in turbulenten Kanalstr{\"o}mungen sowie stabilen und konvektiven Grenzschichten zu untersuchen. Es werden sowohl glatte, als auch raue bzw. bewachsene (por{\"o}se) Oberfl{\"a}chen betrachtet. Anhand neuer Ergebnisse wird demonstriert, dass der Modellansatz in der Lage ist, Referenzdaten zufriedenstellend zu reproduzieren und extrapolieren. Daneben werden aktuelle Arbeiten zur Kopplung des stochastischen Modellansatzes mit Large-Eddy-Simulationen vorgestellt. Es wird gezeigt, dass die stochastische Modellierung oberfl{\"a}chennaher, subgitterskaliger Schwankungen in der Lage ist, wandnahe Turbulenzspektren zu reproduzieren und den filterbasierten Modellfehler bei ansonsten fester Gitteraufl{\"o}sung zu verringern.}, language = {de} } @misc{StarickBehrangLignelletal., author = {Starick, Tommy and Behrang, Masoomeh and Lignell, David O. and Schmidt, Heiko and Kerstein, Alan R.}, title = {Turbulent mixing simulation using the Hierarchical Parcel Swapping (HiPS) model}, series = {Proceedings of the Conference on Modelling Fluid Flow (CMFF'22)}, journal = {Proceedings of the Conference on Modelling Fluid Flow (CMFF'22)}, publisher = {Department of Fluid Mechanics, University of Technology and Economics}, address = {Budapest, Hungary}, isbn = {978-963-421-881-4}, pages = {1 -- 7}, language = {en} } @misc{KleinLignellSchmidt, author = {Klein, Marten and Lignell, David O. and Schmidt, Heiko}, title = {Stochastic modeling of temperature and velocity statistics in spherical-shell convection}, series = {Geophysical Research Abstracts, Vol. 21, EGU2019-2220}, journal = {Geophysical Research Abstracts, Vol. 21, EGU2019-2220}, pages = {1}, language = {en} } @misc{KleinSchmidtLignell, author = {Klein, Marten and Schmidt, Heiko and Lignell, David O.}, title = {Map-based modeling of high-Ra turbulent convection in planar and spherical geometries}, series = {Conference on Modelling Fluid Flow 2018 (CMFF'18)}, journal = {Conference on Modelling Fluid Flow 2018 (CMFF'18)}, pages = {1}, abstract = {Turbulent convection is important in many technological and geophysical applications. A model problem for such flows is Rayleigh-B{\´e}nard (RB) convection. The classical RB setup is a fluid- filled box with a heated bottom and cooled top. For geophysical applications, the spherical geometry of the confinement is sometimes important (e.g. in mantle convection). This is addressed by a spherical annulus configuration in which fluid is confined between an inner hot and an outer cold sphere. In this case, the gravity field is radial and its strength can also vary with the radius. Numerical simulations of RB convection are challenging because of the high Rayleigh numbers (Ra) observed in applications. 3-D direct simulations have been performed up to Ra ~ 10^(12), but even larger values of Ra are relevant. Hence modeling is needed if one wishes to increase the accessible Rayleigh number limit within the considerable future. The difficulty is that gradient-diffusion approaches do not allow for scale interactions, which can be crucial for the dynamics of the flow and the resulting heat transfer. In order to make such simulations feasible we make use of a different modeling strategy, the so-called One-Dimensional Turbulence (ODT). ODT resolves all scales of the flow along a notional line of sight, but reduces cost by assuming statistical homogeneity of the flow in the off-line directions. Along the line, turbulent advection is modeled by discrete mapping events, which mimic the effect of turbulent stirring. These events are stochastically sampled with highest probability where shear and buoyancy yield net available energy in analogy to real turbulence. In the talk, we evaluate ODT results against available reference data (e.g. flow statistics, heat transfer) using a new and fully adaptive version of ODT. This new version allows to simulate turbulent convection in spherical geometry. We address this by discussing the effects of radius ratio and radius-dependent gravity.}, language = {en} } @misc{KleinSchmidtLignell, author = {Klein, Marten and Schmidt, Heiko and Lignell, David O.}, title = {Stochastic modeling of transient surface scalar and momentum fluxes in turbulent boundary layers, EMS Annual Meeting 2021, online, 6-10 Sep 2021}, pages = {1}, language = {en} }