@misc{SoltaniZarrinZahariMahadevaiahetal., author = {Soltani Zarrin, Pouya and Zahari, Finn and Mahadevaiah, Mamathamba Kalishettyhalli and Perez, Eduardo and Kohlstedt, Hermann and Wenger, Christian}, title = {Neuromorphic on‑chip recognition of saliva samples of COPD and healthy controls using memristive devices}, series = {Scientific Reports}, volume = {10}, journal = {Scientific Reports}, issn = {2045-2322}, doi = {10.1038/s41598-020-76823-7}, abstract = {Chronic Obstructive Pulmonary Disease (COPD) is a life-threatening lung disease, affecting millions of people worldwide. Implementation of Machine Learning (ML) techniques is crucial for the effective management of COPD in home-care environments. However, shortcomings of cloud-based ML tools in terms of data safety and energy efficiency limit their integration with low-power medical devices. To address this, energy efficient neuromorphic platforms can be used for the hardware-based implementation of ML methods. Therefore, a memristive neuromorphic platform is presented in this paper for the on-chip recognition of saliva samples of COPD patients and healthy controls. The results of its performance evaluations showed that the digital neuromorphic chip is capable of recognizing unseen COPD samples with accuracy and sensitivity values of 89\% and 86\%, respectively. Integration of this technology into personalized healthcare devices will enable the better management of chronic diseases such as COPD.}, language = {en} } @misc{LukosiusLukoseLiskeretal., author = {Lukosius, Mindaugas and Lukose, Rasuolė and Lisker, Marco and Luongo, G. and Elviretti, M. and Mai, Andreas and Wenger, Christian}, title = {Graphene Research in 200 mm CMOS Pilot Line}, series = {45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO), 2022}, journal = {45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO), 2022}, isbn = {978-953-233-103-5}, issn = {2623-8764}, doi = {10.23919/MIPRO55190.2022.9803362}, pages = {113 -- 117}, abstract = {Due to the unique electronic structures, graphene and other 2D Materials are considered as materials which can enable and extend the functionalities and performance in a large variety of applications, among them in microelectronics. At this point, the investigation and preparation of graphene devices in conditions resembling as close as possible the Si technology environment is of highest importance.Towards these goals, this paper focuses on the full spectra of graphene research aspects in 200mm pilot line. We investigated different process module developments such as CMOS compatible growth of high quality graphene on germanium and its growth mechanisms, transfer related challenges on target substrates, patterning, passivation and various concepts of contacting of graphene on a full 200 mm wafers. Finally, we fabricated proof-of-concept test structures e.g. TLM, Hall bars and capacitor structures to prove the feasibility of graphene processing in the pilot line of IHP.}, language = {en} } @misc{BaroniZambelliOlivoetal., author = {Baroni, Andrea and Zambelli, Cristian and Olivo, Piero and Perez, Eduardo and Wenger, Christian and Ielmini, Daniele}, title = {Tackling the Low Conductance State Drift through Incremental Reset and Verify in RRAM Arrays}, series = {2021 IEEE International Integrated Reliability Workshop (IIRW), South Lake Tahoe, CA, USA, 10 December 2021}, journal = {2021 IEEE International Integrated Reliability Workshop (IIRW), South Lake Tahoe, CA, USA, 10 December 2021}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, isbn = {978-1-6654-1794-5}, issn = {2374-8036}, doi = {10.1109/IIRW53245.2021.9635613}, pages = {5}, abstract = {Resistive switching memory (RRAM) is a promising technology for highly efficient computing scenarios. RRAM arrays enabled the acceleration of neural networks for artificial intelligence and the creation of In-Memory Computing circuits. However, the arrays are affected by several issues materializing in conductance variations that might cause severe performance degradation in those applications. Among those, one is related to the drift of the low conductance states appearing immediately at the end of program and verify algorithms that are fundamental for an accurate Multi-level conductance operation. In this work, we tackle the issue by developing an Incremental Reset and Verify technique showing enhanced variability and reliability features compared with a traditional refresh-based approach.}, language = {en} } @misc{MiloAnzaloneZambellietal., author = {Milo, Valerio and Anzalone, Francesco and Zambelli, Cristian and Perez, Eduardo and Mahadevaiah, Mamathamba Kalishettyhalli and Ossorio, {\´O}scar G. and Olivo, Piero and Wenger, Christian and Ielmini, Daniele}, title = {Optimized programming algorithms for multilevel RRAM in hardware neural networks}, series = {IEEE International Reliability Physics Symposium (IRPS), 2021}, journal = {IEEE International Reliability Physics Symposium (IRPS), 2021}, isbn = {978-1-7281-6894-4}, issn = {1938-1891}, doi = {10.1109/IRPS46558.2021.9405119}, abstract = {A key requirement for RRAM in neural network accelerators with a large number of synaptic parameters is the multilevel programming. This is hindered by resistance imprecision due to cycle-to-cycle and device-to-device variations. Here, we compare two multilevel programming algorithms to minimize resistance variations in a 4-kbit array of HfO 2 RRAM. We show that gate-based algorithms have the highest reliability. The optimized scheme is used to implement a neural network with 9-level weights, achieving 91.5\% (vs. software 93.27\%) in MNIST recognition.}, language = {en} } @misc{DirkmannKaiserWengeretal., author = {Dirkmann, Sven and Kaiser, Jan and Wenger, Christian and Mussenbrock, Thomas}, title = {Filament Growth and Resistive Switching in Hafnium Oxide Memristive Devices}, series = {Plasma Sources Science and Technology}, volume = {10}, journal = {Plasma Sources Science and Technology}, number = {17}, issn = {1361-6595}, doi = {10.1021/acsami.7b19836}, pages = {14857 -- 14868}, language = {en} } @misc{StrobelAlvaradoChavarinVoelkeletal., author = {Strobel, Carsten and Alvarado Chavarin, Carlos and V{\"o}lkel, Sandra and Jahn, Andreas and Hiess, Andre and Knaut, Martin and Albert, Matthias and Wenger, Christian and Steinke, Olaff and Stephan, Ulf and R{\"o}hlecke, S{\"o}ren and Mikolajick, Thomas}, title = {Enhanced Electrical Properties of Optimized Vertical Graphene-Base Hot Electron Transistors}, series = {ACS Applied Electronic Materials}, volume = {5}, journal = {ACS Applied Electronic Materials}, number = {3}, issn = {2637-6113}, doi = {10.1021/acsaelm.2c01725}, pages = {1670 -- 1675}, abstract = {The arrival of high-mobility two-dimensional materials like graphene leads to the renaissance of former vertical semiconductor-metal-semiconductor (SMS) hot electron transistors. Because of the monolayer thickness of graphene, improved SMS transistors with a semimetallic graphene-base electrode are now feasible for high-frequency applications. In this study we report about a device that consists of amorphous silicon, graphene, and crystalline silicon. For the first time, this device is fabricated by a four-mask lithography process which leads to significant improvements in the device performance. A strongly increased common-emitter current gain of 2\% could be achieved while the on-off ratio improved to 1.6 × 105, which is already higher than predicted theoretically. This could be mainly attributed to better interface characteristics and decreased lateral dimensions of the devices. A cutoff frequency of approximately 26 MHz could be forecasted based on the DC measurements of the device.}, language = {en} } @misc{StrobelAlvaradoChavarinRichteretal., author = {Strobel, Carsten and Alvarado Chavarin, Carlos and Richter, Karola and Knaut, Martin and Reif, Johanna and Völkel, Sandra and Jahn, Andreas and Albert, Matthias and Wenger, Christian and Kirchner, Robert and Bartha, Johann Wolfgang and Mikolajick, Thomas}, title = {Novel Graphene Adjustable-Barrier Transistor with Ultra-High Current Gain}, series = {ACS Applied Materials \& Interfaces}, volume = {14}, journal = {ACS Applied Materials \& Interfaces}, number = {34}, issn = {1944-8244}, doi = {10.1021/acsami.2c10634}, pages = {39249 -- 39254}, abstract = {A graphene-based three terminal barristor device was proposed to overcome the low on/off ratios and insufficient current saturation of conventional graphene field effect transistors. In this study, we fabricated and analyzed a novel graphene-based transistor, which resembles the structure of the barristor but uses a different operating condition. This new device, termed graphene adjustable-barriers transistor (GABT), utilizes a semiconductor-based gate rather than a metal-insulator gate structure to modulate the device currents. The key feature of the device is the two graphene-semiconductor Schottky barriers with different heights that are controlled simultaneously by the gate voltage. Due to the asymmetry of the barriers, the drain current exceeds the gate current by several orders of magnitude. Thus, the GABT can be considered an amplifier with an alterable current gain. In this work, a silicon-graphene-germanium GABT with an ultra-high current gain (ID/IG up to 8 × 106) was fabricated, and the device functionality was demonstrated. Additionally, a capacitance model is applied to predict the theoretical device performance resulting in an on-off ratio above 106, a swing of 87 mV/dec, and a drivecurrent of about 1 × 106 A/cm2.}, language = {en} } @misc{MahmoodinezhadMoralesNaumannetal., author = {Mahmoodinezhad, Ali and Morales, Carlos and Naumann, Franziska and Plate, Paul and Meyer, Robert and Janowitz, Christoph and Henkel, Karsten and Kot, Małgorzata and Z{\"o}llner, Marvin Hartwig and Wenger, Christian and Flege, Jan Ingo}, title = {Low-temperature atomic layer deposition of indium oxide thin films using trimethylindium and oxygen plasma}, series = {Journal of Vacuum Science and Technology A}, volume = {39}, journal = {Journal of Vacuum Science and Technology A}, number = {6}, issn = {0734-2101}, doi = {10.1116/6.0001375}, abstract = {Indium oxide (InxOy) thin films were deposited by plasma-enhanced atomic layer deposition (PEALD) using trimethylindium and oxygen plasma in a low-temperature range of 80-200 °C. The optical properties, chemical composition, crystallographic structure, and electrical characteristics of these layers were investigated by spectroscopic ellipsometry (SE), x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), as well as current-voltage and capacitance-voltage measurements. The SE results yielded a nearly constant growth rate of 0.56 {\AA} per cycle and a thickness inhomogeneity of ≤1.2\% across 4-in. substrates in the temperature range of 100-150 °C. The refractive index (at 632.8 nm) was found to be 2.07 for the films deposited at 150 °C. The PEALD-InxOy layers exhibit a direct (3.3 ± 0.2 eV) and an indirect (2.8 ± 0.1 eV) bandgap with an uptrend for both with increasing substrate temperature. Based on XPS characterization, all InxOy samples are free of carbon impurities and show a temperature-dependent off-stoichiometry indicating oxygen vacancies. XRD diffraction patterns demonstrate an onset of crystallization at 150 °C. Consistent with the optical, XPS, and XRD data, the films deposited at ≥150 °C possess higher electrical conductivity. Our findings prove that a low-temperature PEALD process of InxOy is feasible and promising for a high-quality thin-film deposition without chemical impurities on thermally fragile substrates.}, language = {en} } @misc{JanowitzMahmoodinezhadKotetal., author = {Janowitz, Christoph and Mahmoodinezhad, Ali and Kot, Małgorzata and Morales, Carlos and Naumann, Franziska and Plate, Paul and Z{\"o}llner, Marvin Hartwig and B{\"a}rwolf, Florian and Stolarek, David and Wenger, Christian and Henkel, Karsten and Flege, Jan Ingo}, title = {Toward controlling the Al2O3/ZnO interface properties by in situ ALD preparation}, series = {Dalton Transactions}, volume = {51}, journal = {Dalton Transactions}, issn = {1477-9234}, doi = {10.1039/D1DT04008A}, pages = {9291 -- 9301}, abstract = {An Al2O3/ZnO heterojunction was grown on a Si single crystal substrate by subsequent thermal and plasma-assisted atomic layer deposition (ALD) in situ. The band offsets of the heterointerface were then studied by consecutive removal of the layers by argon sputtering, followed by in situ X-ray photoelectron spectroscopy. The valence band maximum and conduction band minimum of Al2O3 are found to be 1.1 eV below and 2.3 eV above those of ZnO, resulting in a type-I staggered heterojunction. An apparent reduction of ZnO to elemental Zn in the interface region was detected in the Zn 2p core level and Zn L3MM Auger spectra. This suggests an interface formation different from previous models. The reduction of ZnO to Zn in the interface region accompanied by the creation of oxygen vacancies in ZnO results in an upward band bending at the interface. Therefore, this study suggests that interfacial properties such as the band bending as well as the valence and conduction band offsets should be in situ controllable to a certain extent by careful selection of the process parameters.}, language = {en} } @misc{FritscherKnoedtelMallahetal., author = {Fritscher, Markus and Kn{\"o}dtel, Johannes and Mallah, Maen and Pechmann, Stefan and Perez-Bosch Quesada, Emilio and Rizzi, Tommaso and Wenger, Christian and Reichenbach, Marc}, title = {Mitigating the Effects of RRAM Process Variation on the Accuracy of Artifical Neural Networks}, series = {Embedded Computer Systems: Architectures, Modeling, and Simulation. SAMOS 2021. Lecture Notes in Computer Science}, journal = {Embedded Computer Systems: Architectures, Modeling, and Simulation. SAMOS 2021. Lecture Notes in Computer Science}, publisher = {Springer}, isbn = {978-3-031-04579-0}, issn = {0302-9743}, doi = {10.1007/978-3-031-04580-6_27}, pages = {401 -- 417}, abstract = {Weight storage is a key challenge in the efficient implementation of artificial neural networks. Novel memory technologies such as RRAM are able to greatly improve density and introduce non-volatility and multibit capabilities to this component of ANN accelerators. The usage of RRAM in this domain comes with downsides, mainly caused by cycle-to-cycle and device-to-device variability leading to erroneous readouts, greatly affecting digital systems. ANNs have the ability to compensate for this by their inherent redundancy and usually exhibit a gradual deterioration in the accuracy of the task at hand. This means, that slight error rates can be acceptable for weight storage in an ANN accelerator. In this work we link device-to-device variability to the accuracy of an ANN for such an accelerator. From this study, we can estimate how strongly a certain net is affected by a certain device parameter variability. This methodology is then used to present three mitigation strategies and to evaluate how they affect the reaction of the network to variability: a) Dropout Layers b) Fault-Aware Training c) Redundancy. These mitigations are then evaluated by their ability to improve accuracy and to lower hardware overhead by providing data for a real-word example. We improved this network's resilience in such a way that it could tolerate double the variation in one of the device parameters (standard deviation of the oxide thickness can be 0.4 nm instead of 0.2 nm while maintaining sufficient accuracy.)}, language = {en} } @misc{PechmannMaiVoelkeletal., author = {Pechmann, Stefan and Mai, Timo and V{\"o}lkel, Matthias and Mahadevaiah, Mamathamba Kalishettyhalli and Perez, Eduardo and Perez-Bosch Quesada, Emilio and Reichenbach, Marc and Wenger, Christian and Hagelauer, Amelie}, title = {A Versatile, Voltage-Pulse Based Read and Programming Circuit for Multi-Level RRAM Cells}, series = {Electronics}, volume = {10}, journal = {Electronics}, number = {5}, issn = {2079-9292}, doi = {10.3390/electronics10050530}, pages = {17}, abstract = {In this work, we present an integrated read and programming circuit for Resistive Random Access Memory (RRAM) cells. Since there are a lot of different RRAM technologies in research and the process variations of this new memory technology often spread over a wide range of electrical properties, the proposed circuit focuses on versatility in order to be adaptable to different cell properties. The circuit is suitable for both read and programming operations based on voltage pulses of flexible length and height. The implemented read method is based on evaluating the voltage drop over a measurement resistor and can distinguish up to eight different states, which are coded in binary, thereby realizing a digitization of the analog memory value. The circuit was fabricated in the 130 nm CMOS process line of IHP. The simulations were done using a physics-based, multi-level RRAM model. The measurement results prove the functionality of the read circuit and the programming system and demonstrate that the read system can distinguish up to eight different states with an overall resistance ratio of 7.9.}, language = {en} } @misc{ReiserReichenbachRizzietal., author = {Reiser, Daniel and Reichenbach, Marc and Rizzi, Tommaso and Baroni, Andrea and Fritscher, Markus and Wenger, Christian and Zambelli, Cristian and Bertozzi, Davide}, title = {Technology-Aware Drift Resilience Analysis of RRAM Crossbar Array Configurations}, series = {21st IEEE Interregional NEWCAS Conference (NEWCAS), 26-28 June 2023, Edinburgh, United Kingdom}, journal = {21st IEEE Interregional NEWCAS Conference (NEWCAS), 26-28 June 2023, Edinburgh, United Kingdom}, publisher = {IEEE}, address = {Piscataway, NJ}, isbn = {979-8-3503-0024-6}, doi = {10.1109/NEWCAS57931.2023}, abstract = {In-memory computing with resistive-switching random access memory (RRAM) crossbar arrays has the potential to overcome the major bottlenecks faced by digital hardware for data-heavy workloads such as deep learning. However, RRAM devices are subject to several non-idealities that result in significant inference accuracy drops compared with software baseline accuracy. A critical one is related to the drift of the conductance states appearing immediately at the end of program and verify algorithms that are mandatory for accurate multi-level conductance operation. The support of drift models in state-of-the-art simulation tools of memristive computationin-memory is currently only in the early stage, since they overlook key device- and array-level parameters affecting drift resilience such as the programming algorithm of RRAM cells, the choice of target conductance states and the weight-toconductance mapping scheme. The goal of this paper is to fully expose these parameters to RRAM crossbar designers as a multi-dimensional optimization space of drift resilience. For this purpose, a simulation framework is developed, which comes with the suitable abstractions to propagate the effects of those RRAM crossbar configuration parameters to their ultimate implications over inference performance stability.}, language = {en} } @misc{UhlmannPerezBoschQuesadaFritscheretal., author = {Uhlmann, Max and P{\´e}rez-Bosch Quesada, Emilio and Fritscher, Markus and P{\´e}rez, Eduardo and Schubert, Markus Andreas and Reichenbach, Marc and Ostrovskyy, Philip and Wenger, Christian and Kahmen, Gerhard}, title = {One-Transistor-Multiple-RRAM Cells for Energy-Efficient In-Memory Computing}, series = {21st IEEE Interregional NEWCAS Conference (NEWCAS)}, journal = {21st IEEE Interregional NEWCAS Conference (NEWCAS)}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, isbn = {979-8-3503-0024-6}, issn = {2474-9672}, doi = {10.1109/NEWCAS57931.2023.10198073}, pages = {5}, abstract = {The use of resistive random-access memory (RRAM) for in-memory computing (IMC) architectures has significantly improved the energy-efficiency of artificial neural networks (ANN) over the past years. Current RRAM-technologies are physically limited to a defined unambiguously distinguishable number of stable states and a maximum resistive value and are compatible with present complementary metal-oxide semiconductor (CMOS)-technologies. In this work, we improved the accuracy of current ANN models by using increased weight resolutions of memristive devices, combining two or more in-series RRAM cells, integrated in the back end of line (BEOL) of the CMOS process. Based on system level simulations, 1T2R devices were fabricated in IHP's 130nm SiGe:BiCMOS technology node, demonstrating an increased number of states. We achieved an increase in weight resolution from 3 bit in ITIR cells to 6.5 bit in our 1T2R cell. The experimental data of 1T2R devices gives indications for the performance and energy-efficiency improvement in ITNR arrays for ANN applications.}, language = {en} }