@misc{PerezMahadevaiahPerezBoschQuesadaetal., author = {Perez, Eduardo and Mahadevaiah, Mamathamba Kalishettyhalli and Perez-Bosch Quesada, Emilio and Wenger, Christian}, title = {In-depth characterization of switching dynamics in amorphous HfO2 memristive arrays for the implementation of synaptic updating rules}, series = {Japanese Journal of Applied Physics}, volume = {61}, journal = {Japanese Journal of Applied Physics}, issn = {0021-4922}, doi = {10.35848/1347-4065/ac6a3b}, pages = {1 -- 7}, abstract = {Accomplishing truly analog conductance modulation in memristive arrays is crucial in order to implement the synaptic plasticity in hardware-based neuromorphic systems. In this paper, such a feature was addressed by exploiting the inherent stochasticity of switching dynamics in amorphous HfO2 technology. A thorough statistical analysis of experimental characteristics measured in 4 kbit arrays by using trains of identical depression/potentiation pulses with different voltage amplitudes and pulse widths provided the key to develop two different updating rules and to define their optimal programming parameters. The first rule is based on applying a specific number of identical pulses until the conductance value achieves the desired level. The second one utilized only one single pulse with a particular amplitude to achieve the targeted conductance level. In addition, all the results provided by the statistical analysis performed may play an important role in understanding better the switching behavior of this particular technology.}, language = {en} } @misc{PechmannPerezWengeretal., author = {Pechmann, Stefan and Perez, Eduardo and Wenger, Christian and Hagelauer, Amelie}, title = {A current mirror Based read circuit design with multi-level capability for resistive switching deviceb}, series = {2024 International Conference on Electronics, Information, and Communication (ICEIC)}, journal = {2024 International Conference on Electronics, Information, and Communication (ICEIC)}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, isbn = {979-8-3503-7188-8}, issn = {2767-7699}, doi = {10.1109/ICEIC61013.2024.10457188}, pages = {4}, abstract = {This paper presents a read circuit design for resistive memory cells based on current mirrors. The circuit utilizes high-precision current mirrors and reference cells to determine the state of resistive memory using comparators. It offers a high degree in adaptability in terms of both resistance range and number of levels. Special emphasis was put on device protection to prevent accidental programming of the memory during read operations. The realized circuit can resolve eight states with a resolution of up to 1 k Ω, realizing a digitization of the analog memory information. Furthermore, the integration in a complete memory macro is shown. The circuit was realized in a 130 nm-process but can easily be adapted to other processes and resistive memory technologies.}, language = {en} } @misc{NitschRatzkePozarowskaetal., author = {Nitsch, Paul-G. and Ratzke, Markus and Pozarowska, Emilia and Flege, Jan Ingo and Alvarado Chavarin, Carlos and Wenger, Christian and Fischer, Inga Anita}, title = {Deposition of reduced ceria thin films by reactive magnetron sputtering for the development of a resistive gas sensor}, series = {Verhandlungen der DPG, Berlin 2024}, journal = {Verhandlungen der DPG, Berlin 2024}, publisher = {Deutsche Physikalische Gesellschaft}, address = {Bad Honnef}, issn = {0420-0195}, abstract = {The use of cerium oxide for hydrogen sensing is limited by the low electrical conductivity of layers deposited from a ceria target. To increase the electrical conductivity, partially reduced cerium oxide layers were obtained from a metallic cerium target by reactive magnetron sputtering. The proportions of the oxidation states Ce3+, present in reduced species, and Ce4+, present in fully oxidized species, were determined by ex-situ XPS. For electrical characterization, films were deposited on planarized tungsten finger electrodes. IV curves were measured over several days to investigate possible influences of oxygen and humidity on electrical conductivity. The morphological stability of the layers under ambient conditions was investigated by microscopical methods. The XPS results show a significant amount of Ce3+ in the layers. The electrical conductivity of as-grown samples is several orders of magnitude higher than that of samples grown from a ceria target. However, the conductivity decreases over time, indicating an oxidation of the layers. The surface morphology of the samples was found to be changing drastically within days, leading to partial delamination.}, language = {en} } @misc{NikiruyPerezBaronietal., author = {Nikiruy, Kristina and Perez, Eduardo and Baroni, Andrea and Reddy, Keerthi Dorai Swamy and Pechmann, Stefan and Wenger, Christian and Ziegler, Martin}, title = {Blooming and pruning: learning from mistakes with memristive synapses}, series = {Scientific Reports}, volume = {14}, journal = {Scientific Reports}, number = {1}, issn = {2045-2322}, doi = {10.1038/s41598-024-57660-4}, abstract = {AbstractBlooming and pruning is one of the most important developmental mechanisms of the biological brain in the first years of life, enabling it to adapt its network structure to the demands of the environment. The mechanism is thought to be fundamental for the development of cognitive skills. Inspired by this, Chialvo and Bak proposed in 1999 a learning scheme that learns from mistakes by eliminating from the initial surplus of synaptic connections those that lead to an undesirable outcome. Here, this idea is implemented in a neuromorphic circuit scheme using CMOS integrated HfO2-based memristive devices. The implemented two-layer neural network learns in a self-organized manner without positive reinforcement and exploits the inherent variability of the memristive devices. This approach provides hardware, local, and energy-efficient learning. A combined experimental and simulation-based parameter study is presented to find the relevant system and device parameters leading to a compact and robust memristive neuromorphic circuit that can handle association tasks.}, language = {en} } @misc{KloesBischoffLeiseetal., author = {Kloes, Alexander and Bischoff, Carl and Leise, Jakob and Perez-Bosch Quesada, Emilio and Wenger, Christian and Perez, Eduardo}, title = {Stochastic switching of memristors and consideration in circuit simulation}, series = {Solid State Electronics}, volume = {201}, journal = {Solid State Electronics}, issn = {0038-1101}, doi = {10.1016/j.sse.2023.108606}, abstract = {We explore the stochastic switching of oxide-based memristive devices by using the Stanford model for circuit simulation. From measurements, the device-to-device (D2D) and cycle-to-cycle (C2C) statistical variation is extracted. In the low-resistive state (LRS) dispersion by D2D variability is dominant. In the high-resistive state (HRS) C2C dispersion becomes the main source of fluctuation. A statistical procedure for the extraction of parameters of the compact model is presented. Thereby, in a circuit simulation the typical D2D and C2C fluctuations of the current-voltage (I-V) characteristics can be emulated by extracting statistical parameters of key model parameters. The statistical distributions of the parameters are used in a Monte Carlo simulation to reproduce the I-V D2D and C2C dispersions which show a good agreement to the measured curves. The results allow the simulation of the on/off current variation for the design of memory cells or can be used to emulate the synaptic behavior of these devices in artificial neural networks realized by a crossbar array of memristors.}, language = {en} } @misc{PrueferWengerBieretal., author = {Pr{\"u}fer, Mareike and Wenger, Christian and Bier, Frank F. and Laux, Eva-Maria and H{\"o}lzel, Ralph}, title = {Activity of AC electrokinetically immobilized horseradish peroxidase}, series = {Electrophoresis}, volume = {43}, journal = {Electrophoresis}, number = {18-19}, issn = {1522-2683}, doi = {10.1002/elps.202200073}, pages = {1920 -- 1933}, abstract = {Dielectrophoresis(DEP) is an AC electrokinetic effect mainly used to manipulate cells.Smaller particles,like virions,antibodies,enzymes,andevendyemolecules can be immobilized by DEP as well. In principle, it was shown that enzymesare active after immobilization by DEP, but no quantification of the retainedactivity was reported so far. In this study, the activity of the enzyme horseradishperoxidase (HRP) is quantified after immobilization by DEP. For this, HRP is immobilized on regular arrays of titanium nitride ring electrodes of 500 nm diameter and 20 nm widths. The activity of HRP on the electrode chip is measured with a limit of detection of 60 fg HRP by observing the enzymatic turnover of Amplex Red and H2O2 to fluorescent resoruf in by fluorescence microscopy. The initial activity of the permanently immobilized HRP equals up to 45\% of the activity that can be expected for an ideal monolayer of HRP molecules on all electrodes of the array. Localization of the immobilizate on the electrodesis accomplished by staining with the fluorescent product of the enzyme reac-tion.The high residual activity of enzymes after AC field induced immobilization shows the method's suitability for biosensing and research applications.}, language = {en} } @misc{BaroniGlukhovPerezetal., author = {Baroni, Andrea and Glukhov, Artem and Perez, Eduardo and Wenger, Christian and Calore, Enrico and Schifano, Sebastiano Fabio and Olivo, Piero and Ielmini, Daniele and Zambelli, Cristian}, title = {An energy-efficient in-memory computing architecture for survival data analysis based on resistive switching memories}, series = {Frontiers in Neuroscience}, volume = {Vol. 16}, journal = {Frontiers in Neuroscience}, issn = {1662-4548}, doi = {10.3389/fnins.2022.932270}, pages = {1 -- 16}, abstract = {One of the objectives fostered in medical science is the so-called precision medicine, which requires the analysis of a large amount of survival data from patients to deeply understand treatment options. Tools like Machine Learning and Deep Neural Networks are becoming a de-facto standard. Nowadays, computing facilities based on the Von Neumann architecture are devoted to these tasks, yet rapidly hitting a bottleneck in performance and energy efficiency. The In-Memory Computing (IMC) architecture emerged as a revolutionary approach to overcome that issue. In this work, we propose an IMC architecture based on Resistive switching memory (RRAM) crossbar arrays to provide a convenient primitive for matrix-vector multiplication in a single computational step. This opens massive performance improvement in the acceleration of a neural network that is frequently used in survival analysis of biomedical records, namely the DeepSurv. We explored how the synaptic weights mapping strategy and the programming algorithms developed to counter RRAM non-idealities expose a performance/energy trade-off. Finally, we assessed the benefits of the proposed architectures with respect to a GPU-based realization of the same task, evidencing a tenfold improvement in terms of performance and three orders of magnitude with respect to energy efficiency.}, language = {en} } @misc{PerezBoschQuesadaRomeroZalizPerezetal., author = {P{\´e}rez-Bosch Quesada, Emilio and Romero-Zaliz, Roc{\´i}o and Perez, Eduardo and Mahadevaiah, Mamathamba Kalishettyhalli and Reuben, John and Schubert, Markus Andreas and Jim{\´e}nez-Molinos, Francisco and Rold{\´a}n, Juan Bautista and Wenger, Christian}, title = {Toward Reliable Compact Modeling of Multilevel 1T-1R RRAM Devices for Neuromorphic Systems}, series = {Electronics (MDPI)}, volume = {10}, journal = {Electronics (MDPI)}, number = {6}, issn = {2079-9292}, doi = {10.3390/electronics10060645}, pages = {13}, abstract = {In this work, three different RRAM compact models implemented in Verilog-A are analyzed and evaluated in order to reproduce the multilevel approach based on the switching capability of experimental devices. These models are integrated in 1T-1R cells to control their analog behavior by means of the compliance current imposed by the NMOS select transistor. Four different resistance levels are simulated and assessed with experimental verification to account for their multilevel capability. Further, an Artificial Neural Network study is carried out to evaluate in a real scenario the viability of the multilevel approach under study.}, language = {en} } @misc{PetrykDykaPerezetal., author = {Petryk, Dmytro and Dyka, Zoya and Perez, Eduardo and Mahadevaiah, Mamathamba Kalishettyhalli and Kabin, Ievgen and Wenger, Christian and Langend{\"o}rfer, Peter}, title = {Evaluation of the Sensitivity of RRAM Cells to Optical Fault Injection Attacks}, series = {EUROMICRO Conference on Digital System Design (DSD 2020), Special Session: Architecture and Hardware for Security Applications (AHSA)}, journal = {EUROMICRO Conference on Digital System Design (DSD 2020), Special Session: Architecture and Hardware for Security Applications (AHSA)}, isbn = {978-1-7281-9535-3}, issn = {978-1-7281-9536-0}, doi = {10.1109/DSD51259.2020.00047}, pages = {8}, language = {en} } @misc{GlukhovLepriMiloetal., author = {Glukhov, Artem and Lepri, Nicola and Milo, Valerio and Baroni, Andrea and Zambelli, Cristian and Olivo, Piero and Perez, Eduardo and Wenger, Christian and Ielmini, Daniele}, title = {End-to-end modeling of variability-aware neural networks based on resistive-switching memory arrays}, series = {Proc. 30th IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC 2022)}, journal = {Proc. 30th IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC 2022)}, doi = {10.1109/VLSI-SoC54400.2022.9939653}, pages = {1 -- 5}, abstract = {Resistive-switching random access memory (RRAM) is a promising technology that enables advanced applications in the field of in-memory computing (IMC). By operating the memory array in the analogue domain, RRAM-based IMC architectures can dramatically improve the energy efficiency of deep neural networks (DNNs). However, achieving a high inference accuracy is challenged by significant variation of RRAM conductance levels, which can be compensated by (i) advanced programming techniques and (ii) variability-aware training (VAT) algorithms. In both cases, however, detailed knowledge and accurate physics-based statistical models of RRAM are needed to develop programming and VAT methodologies. This work presents an end-to-end approach to the development of highly-accurate IMC circuits with RRAM, encompassing the device modeling, the precise programming algorithm, and the VAT simulations to maximize the DNN classification accuracy in presence of conductance variations.}, language = {en} }