@misc{SoltaniZarrinWenger, author = {Soltani Zarrin, Pouya and Wenger, Christian}, title = {Implementation of Siamese-Based Few-Shot Learning Algorithms for the Distinction of COPD and Asthma Subjects}, series = {Artificial Neural Networks and Machine Learning - ICANN 2020 : 29th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 15-18, 2020, Proceedings, Part I}, journal = {Artificial Neural Networks and Machine Learning - ICANN 2020 : 29th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 15-18, 2020, Proceedings, Part I}, publisher = {Springer}, address = {Cham}, doi = {10.1007/978-3-030-61609-0_34}, pages = {431 -- 440}, abstract = {This paper investigates the practicality of applying braininspired Few-Shot Learning (FSL) algorithms for addressing shortcomings of Machine Learning (ML) methods in medicine with limited data availability. As a proof of concept, the application of ML for the detection of Chronic Obstructive Pulmonary Disease (COPD) patients was investigated. The complexities associated with the distinction of COPD and asthma patients and the lack of sufficient training data for asthma subjects impair the performance of conventional ML models for the recognition of COPD. Therefore, the objective of this study was to implement FSL methods for the distinction of COPD and asthma subjects with a few available data points. The proposed FSL models in this work were capable of recognizing asthma and COPD patients with 100\% accuracy, demonstrating the feasibility of the approach for applications such as medicine with insufficient data availability.}, language = {en} } @misc{ZanottiPuglisiMiloetal., author = {Zanotti, Tommaso and Puglisi, Francesco Maria and Milo, Valerio and P{\´e}rez, Eduardo and Mahadevaiah, Mamathamba Kalishettyhalli and Ossorio, {\´O}scar G. and Wenger, Christian and Pavan, Paolo and Olivo, Piero and Ielmini, Daniele}, title = {Reliability of Logic-in-Memory Circuits in Resistive Memory Arrays}, series = {IEEE Transactions on Electron Devices}, volume = {67}, journal = {IEEE Transactions on Electron Devices}, number = {11}, issn = {0018-9383}, doi = {10.1109/TED.2020.3025271}, pages = {4611 -- 4615}, abstract = {Logic-in-memory (LiM) circuits based on resistive random access memory (RRAM) devices and the material implication logic are promising candidates for the development of low-power computing devices that could fulfill the growing demand of distributed computing systems. However, these circuits are affected by many reliability challenges that arise from device nonidealities (e.g., variability) and the characteristics of the employed circuit architecture. Thus, an accurate investigation of the variability at the array level is needed to evaluate the reliability and performance of such circuit architectures. In this work, we explore the reliability and performance of smart IMPLY (SIMPLY) (i.e., a recently proposed LiM architecture with improved reliability and performance) on two 4-kb RRAM arrays based on different resistive switching oxides integrated in the back end of line (BEOL) of the 0.25- μm BiCMOS process. We analyze the tradeoff between reliability and energy consumption of SIMPLY architecture by exploiting the results of an extensive array-level variability characterization of the two technologies. Finally, we study the worst case performance of a full adder implemented with the SIMPLY architecture and benchmark it on the analogous CMOS implementation.}, language = {en} } @misc{ZahariPerezMahadevaiahetal., author = {Zahari, Finn and P{\´e}rez, Eduardo and Mahadevaiah, Mamathamba Kalishettyhalli and Kohlstedt, Hermann and Wenger, Christian and Ziegler, Martin}, title = {Analogue pattern recognition with stochastic switching binary CMOS‑integrated memristive devices}, series = {Scientific Reports}, volume = {10}, journal = {Scientific Reports}, issn = {2045-2322}, doi = {10.1038/s41598-020-71334-x}, pages = {15}, abstract = {Biological neural networks outperform todays computer technology in terms of power consumption and computing speed when associative tasks, like pattern recognition, are to be solved. The analogue and massive parallel in-memory computing in biology differs strongly with conventional transistor electronics using the von Neumann architecture. Therefore, novel bio-inspired computing architectures are recently highly investigated in the area of neuromorphic computing. Here, memristive devices, which serve as non-volatile resistive memory, are used to emulate the plastic behaviour of biological synapses. In particular, CMOS integrated resistive random access memory (RRAM) devices are promising candidates to extend conventional CMOS technology in neuromorphic systems. However, dealing with the inherent stochasticity of the resistive switching effect can be challenging for network performance. In this work, the probabilistic switching is exploited to emulate stochastic plasticity with fully CMOS integrated binary RRAM devices. Two different RRAM technologies with different device variabilities are investigated in detail and their use in a stochastic artificial neural network (StochANN) to solve the MINST pattern recognition task is examined. A mixed-signal implementation with hardware synapses and software neurons as well as numerical simulations show the proposed concept of stochastic computing is able to handle analogue data with binary memory cells.}, language = {en} } @misc{PetzoldPirosEilhardtetal., author = {Petzold, Stefan and Piros, Eszter and Eilhardt, Robert and Zintler, Alexander and Vogel, Tobias and Kaiser, Nico and Radetinac, Aldin and Komissinskiy, Philipp and Jalaguier, Eric and Nolot, Emmanuel and Charpin-Nicolle, Christelle and Wenger, Christian and Molina-Luna, Leopoldo and Miranda, Enrique and Alff, Lambert}, title = {Tailoring the Switching Dynamics in Yttrium Oxide-Based RRAM Devices by Oxygen Engineering: From Digital to Multi-Level Quantization toward Analog Switching}, series = {Advanced Electronic Materials}, volume = {6}, journal = {Advanced Electronic Materials}, number = {11}, issn = {2199-160X}, doi = {10.1002/aelm.202000439}, pages = {13}, abstract = {This work investigates the transition from digital to gradual or analog resistive switching in yttrium oxide-based resistive random-access memory devices. It is shown that this transition is determined by the amount of oxygen in the functional layer. A homogeneous reduction of the oxygen content not only reduces the electroforming voltage, allowing for forming-free devices, but also decreases the voltage operation window of switching, thereby reducing intra-device variability. The most important effect as the dielectric becomes substoichiometric by oxygen engineering is that more intermediate (quantized) conduction states are accessible. A key factor for this reproducibly controllable behavior is the reduced local heat dissipation in the filament region due to the increased thermal conductivity of the oxygen depleted layer. The improved accessibility of quantized resistance states results in a semi-gradual switching both for the set and reset processes, as strongly desired for multi-bit storage and for an accurate definition of the synaptic weights in neuromorphic systems. A theoretical model based on the physics of mesoscopic structures describing current transport through a nano-constriction including asymmetric potential drops at the electrodes and non-linear conductance quantization is provided. The results contribute to a deeper understanding on how to tailor materials properties for novel memristive functionalities.}, language = {en} } @misc{PerezAvilaGonzalezCorderoPerezetal., author = {Perez-Avila, Antonio Javier and Gonzalez-Cordero, Gerardo and P{\´e}rez, Eduardo and Perez-Bosch Quesada, Emilio and Mahadevaiah, Mamathamba Kalishettyhalli and Wenger, Christian and Roldan, Juan Bautista and Jimenez-Molinos, Francisco}, title = {Behavioral modeling of multilevel HfO2-based memristors for neuromorphic circuit simulation}, series = {XXXV Conference on Design of Circuits and Integrated Systems (DCIS), Segovia, Spain}, journal = {XXXV Conference on Design of Circuits and Integrated Systems (DCIS), Segovia, Spain}, doi = {10.1109/DCIS51330.2020.9268652}, abstract = {An artificial neural network based on resistive switching memristors is implemented and simulated in LTspice. The influence of memristor variability and the reduction of the continuous range of synaptic weights into a discrete set of conductance levels is analyzed. To do so, a behavioral model is proposed for multilevel resistive switching memristors based on Al-doped HfO2 dielectrics, and it is implemented in a spice based circuit simulator. The model provides an accurate description of the conductance in the different conductive states in addition to describe the device-to-device variability}, language = {en} } @misc{PerezOssorioDuenasetal., author = {P{\´e}rez, Eduardo and Ossorio, {\´O}scar G. and Due{\~n}as, Salvador and Cast{\´a}n, Helena and Garc{\´i}a, Hector and Wenger, Christian}, title = {Programming Pulse Width Assessment for Reliable and Low-Energy Endurance Performance in Al:HfO2-Based RRAM Arrays}, series = {Electronics (MDPI)}, volume = {9}, journal = {Electronics (MDPI)}, number = {5}, issn = {2079-9292}, doi = {10.3390/electronics9050864}, abstract = {A crucial step in order to achieve fast and low-energy switching operations in resistive random access memory (RRAM) memories is the reduction of the programming pulse width. In this study, the incremental step pulse with verify algorithm (ISPVA) was implemented by using different pulse widths between 10 μ s and 50 ns and assessed on Al-doped HfO 2 4 kbit RRAM memory arrays. The switching stability was assessed by means of an endurance test of 1k cycles. Both conductive levels and voltages needed for switching showed a remarkable good behavior along 1k reset/set cycles regardless the programming pulse width implemented. Nevertheless, the distributions of voltages as well as the amount of energy required to carry out the switching operations were definitely affected by the value of the pulse width. In addition, the data retention was evaluated after the endurance analysis by annealing the RRAM devices at 150 °C along 100 h. Just an almost negligible increase on the rate of degradation of about 1 μ A at the end of the 100 h of annealing was reported between those samples programmed by employing a pulse width of 10 μ s and those employing 50 ns. Finally, an endurance performance of 200k cycles without any degradation was achieved on 128 RRAM devices by using programming pulses of 100 ns width}, language = {en} } @misc{MoralesMahmoodinezhadSchubertetal., author = {Morales, Carlos and Mahmoodinezhad, Ali and Schubert, Andreas Markus and Wenger, Christian and Henkel, Karsten and Flege, Jan Ingo}, title = {Functional ultra-thin oxide films deposited by atomic layer deposition on structured substrates}, series = {Verhandlungen der DPG - SurfaceScience21}, volume = {2021}, journal = {Verhandlungen der DPG - SurfaceScience21}, publisher = {Deutsche Physikalische Gesellschaft e.V.}, address = {Bad Honnef}, abstract = {In the last decades, atomic layer deposition (ALD) has gained prominence in the materials and surface science communities owing to its high potential for integration as a scalable process in microelectronics. ALD's largest strengths are its well-controlled layer-by-layer deposition and growth conformity on 3D structures. Yet, the ALD technique is also well known to lead to amorphous and defective, non-stoichiometric thin films, resulting in modified materials properties that may even preferentially be used in certain applications. To study these issues, we have developed an in-situ ALD reactor attached to an X-ray photoelectron spectroscopy (XPS) system, capable of switching between both pump and flow-type operation. This novel tool allows to cover the entire range of compounds and recipes used in ALD, thus clarifying the role of such defects at different deposition stages, growth conditions and film/substrate interfaces. To exemplify these sorts of studies, we show the deposition of Al2O3 5-10 nm films on nanostructured Si, and their use as substrates for functional CeOx ALD deposits.}, language = {en} } @misc{PerezBoschQuesadaRomeroZalizPerezetal., author = {P{\´e}rez-Bosch Quesada, Emilio and Romero-Zaliz, Roc{\´i}o and P{\´e}rez, Eduardo and Mahadevaiah, Mamathamba Kalishettyhalli and Reuben, John and Schubert, Markus Andreas and Jim{\´e}nez-Molinos, Francisco and Rold{\´a}n, Juan Bautista and Wenger, Christian}, title = {Toward Reliable Compact Modeling of Multilevel 1T-1R RRAM Devices for Neuromorphic Systems}, series = {Electronics (MDPI)}, volume = {10}, journal = {Electronics (MDPI)}, number = {6}, issn = {2079-9292}, doi = {10.3390/electronics10060645}, pages = {13}, abstract = {In this work, three different RRAM compact models implemented in Verilog-A are analyzed and evaluated in order to reproduce the multilevel approach based on the switching capability of experimental devices. These models are integrated in 1T-1R cells to control their analog behavior by means of the compliance current imposed by the NMOS select transistor. Four different resistance levels are simulated and assessed with experimental verification to account for their multilevel capability. Further, an Artificial Neural Network study is carried out to evaluate in a real scenario the viability of the multilevel approach under study.}, language = {en} } @misc{PechmannMaiVoelkeletal., author = {Pechmann, Stefan and Mai, Timo and V{\"o}lkel, Matthias and Mahadevaiah, Mamathamba Kalishettyhalli and P{\´e}rez, Eduardo and Perez-Bosch Quesada, Emilio and Reichenbach, Marc and Wenger, Christian and Hagelauer, Amelie}, title = {A Versatile, Voltage-Pulse Based Read and Programming Circuit for Multi-Level RRAM Cells}, series = {Electronics}, volume = {10}, journal = {Electronics}, number = {5}, issn = {2079-9292}, doi = {10.3390/electronics10050530}, pages = {17}, abstract = {In this work, we present an integrated read and programming circuit for Resistive Random Access Memory (RRAM) cells. Since there are a lot of different RRAM technologies in research and the process variations of this new memory technology often spread over a wide range of electrical properties, the proposed circuit focuses on versatility in order to be adaptable to different cell properties. The circuit is suitable for both read and programming operations based on voltage pulses of flexible length and height. The implemented read method is based on evaluating the voltage drop over a measurement resistor and can distinguish up to eight different states, which are coded in binary, thereby realizing a digitization of the analog memory value. The circuit was fabricated in the 130 nm CMOS process line of IHP. The simulations were done using a physics-based, multi-level RRAM model. The measurement results prove the functionality of the read circuit and the programming system and demonstrate that the read system can distinguish up to eight different states with an overall resistance ratio of 7.9.}, language = {en} } @misc{MatbaechiEttehadWenger, author = {Matbaechi Ettehad, Honeyeh and Wenger, Christian}, title = {Characterization and Separation of Live and Dead Yeast Cells Using CMOS-Based DEP Microfluidics}, series = {Micromachines}, volume = {12}, journal = {Micromachines}, number = {3}, issn = {2072-666X}, doi = {10.3390/mi12030270}, pages = {19}, abstract = {This study aims at developing a miniaturized CMOS integrated silicon-based microfluidic system, compatible with a standard CMOS process, to enable the characterization, and separation of live and dead yeast cells (as model bio-particle organisms) in a cell mixture using the DEP technique. DEP offers excellent benefits in terms of cost, operational power, and especially easy electrode integration with the CMOS architecture, and requiring label-free sample preparation. This can increase the likeliness of using DEP in practical settings. In this work the DEP force was generated using an interdigitated electrode arrays (IDEs) placed on the bottom of a CMOS-based silicon microfluidic channel. This system was primarily used for the immobilization of yeast cells using DEP. This study validated the system for cell separation applications based on the distinct responses of live and dead cells and their surrounding media. The findings confirmed the device's capability for efficient, rapid and selective cell separation. The viability of this CMOS embedded microfluidic for dielectrophoretic cell manipulation applications and compatibility of the dielectrophoretic structure with CMOS production line and electronics, enabling its future commercially mass production.}, language = {en} } @misc{PerezPerezAvilaRomeroZalizetal., author = {P{\´e}rez, Eduardo and P{\´e}rez-{\´A}vila, Antonio Javier and Romero-Zaliz, Roc{\´i}o and Mahadevaiah, Mamathamba Kalishettyhalli and P{\´e}rez-Bosch Quesada, Emilio and Roldan, Juan Bautista and Jim{\´e}nez-Molinos, Francisco and Wenger, Christian}, title = {Optimization of Multi-Level Operation in RRAM Arrays for In-Memory Computing}, series = {Electronics (MDPI)}, volume = {10}, journal = {Electronics (MDPI)}, number = {9}, issn = {2079-9292}, doi = {10.3390/electronics10091084}, pages = {15}, abstract = {Accomplishing multi-level programming in resistive random access memory (RRAM) arrays with truly discrete and linearly spaced conductive levels is crucial in order to implement synaptic weights in hardware-based neuromorphic systems. In this paper, we implemented this feature on 4-kbit 1T1R RRAM arrays by tuning the programming parameters of the multi-level incremental step pulse with verify algorithm (M-ISPVA). The optimized set of parameters was assessed by comparing its results with a non-optimized one. The optimized set of parameters proved to be an effective way to define non-overlapped conductive levels due to the strong reduction of the device-to-device variability as well as of the cycle-to-cycle variability, assessed by inter-levels switching tests and during 1k reset-set cycles. In order to evaluate this improvement in real scenarios, the experimental characteristics of the RRAM devices were captured by means of a behavioral model, which was used to simulate two different neuromorphic systems: an 8×8 vector-matrixmultiplication (VMM) accelerator and a 4-layer feedforward neural network for MNIST database recognition. The results clearly showed that the optimization of the programming parameters improved both the precision of VMM results as well as the recognition accuracy of the neural network in about 6\% compared with the use of non-optimized parameters.}, language = {en} } @misc{MiloAnzaloneZambellietal., author = {Milo, Valerio and Anzalone, Francesco and Zambelli, Cristian and P{\´e}rez, Eduardo and Mahadevaiah, Mamathamba Kalishettyhalli and Ossorio, {\´O}scar G. and Olivo, Piero and Wenger, Christian and Ielmini, Daniele}, title = {Optimized programming algorithms for multilevel RRAM in hardware neural networks}, series = {IEEE International Reliability Physics Symposium (IRPS), 2021}, journal = {IEEE International Reliability Physics Symposium (IRPS), 2021}, isbn = {978-1-7281-6894-4}, issn = {1938-1891}, doi = {10.1109/IRPS46558.2021.9405119}, abstract = {A key requirement for RRAM in neural network accelerators with a large number of synaptic parameters is the multilevel programming. This is hindered by resistance imprecision due to cycle-to-cycle and device-to-device variations. Here, we compare two multilevel programming algorithms to minimize resistance variations in a 4-kbit array of HfO 2 RRAM. We show that gate-based algorithms have the highest reliability. The optimized scheme is used to implement a neural network with 9-level weights, achieving 91.5\% (vs. software 93.27\%) in MNIST recognition.}, language = {en} } @misc{PetrykDykaPerezetal., author = {Petryk, Dmytro and Dyka, Zoya and P{\´e}rez, Eduardo and Mahadevaiah, Mamathamba Kalishettyhalli and Kabin, Ievgen and Wenger, Christian and Langend{\"o}rfer, Peter}, title = {Evaluation of the Sensitivity of RRAM Cells to Optical Fault Injection Attacks}, series = {EUROMICRO Conference on Digital System Design (DSD 2020), Special Session: Architecture and Hardware for Security Applications (AHSA)}, journal = {EUROMICRO Conference on Digital System Design (DSD 2020), Special Session: Architecture and Hardware for Security Applications (AHSA)}, isbn = {978-1-7281-9535-3}, issn = {978-1-7281-9536-0}, doi = {10.1109/DSD51259.2020.00047}, pages = {8}, language = {en} } @misc{RomeroZalizPerezJimenezMolinosetal., author = {Romero-Zaliz, Roc{\´i}o and P{\´e}rez, Eduardo and Jimenez-Molinos, Francisco and Wenger, Christian and Roldan, Juan Bautista}, title = {Influence of variability on the performance of HfO2 memristor-based convolutional neural networks}, series = {Solid State Electronics}, volume = {185}, journal = {Solid State Electronics}, issn = {0038-1101}, doi = {10.1016/j.sse.2021.108064}, pages = {5}, abstract = {A study of convolutional neural networks (CNNs) was performed to analyze the influence of quantization and variability in the network synaptic weights. Different CNNs were considered accounting for the number of convolutional layers, size of the filters in the convolutional layer, number of neurons in the final network layers and different sets of quantization levels. The conductance levels of fabricated 1T1R structures based on HfO2 memristors were considered as reference for four or eight level quantization processes at the inference stage of the CNNs, which were previous trained with the MNIST dataset. We also included the variability of the experimental conductance levels that was found to be Gaussian distributed and was correspondingly modeled for the synaptic weight implementation.}, language = {en} } @misc{PerezMahadevaiahPerezBoschQuesadaetal., author = {P{\´e}rez, Eduardo and Mahadevaiah, Mamathamba Kalishettyhalli and Perez-Bosch Quesada, Emilio and Wenger, Christian}, title = {Variability and Energy Consumption Tradeoffs in Multilevel Programming of RRAM Arrays}, series = {IEEE Transactions on Electron Devices}, volume = {68}, journal = {IEEE Transactions on Electron Devices}, number = {6}, issn = {0018-9383}, doi = {10.1109/TED.2021.3072868}, pages = {2693 -- 2698}, abstract = {Achieving a reliable multi-level programming operation in resistive random access memory (RRAM) arrays is still a challenging task. In this work, we assessed the impact of the voltage step value used by the programming algorithm on the device-to-device (DTD) variability of the current distributions of four conductive levels and on the energy consumption featured by programming 4-kbit HfO2-based RRAM arrays. Two different write-verify algorithms were considered and compared, namely, the incremental gate voltage with verify algorithm (IGVVA) and the incremental step pulse with verify algorithm (ISPVA). By using the IGVVA, a main trade-off has to be taken into account since reducing the voltage step leads to a smaller DTD variability at the cost of a strong increase in the energy consumption. Although the ISPVA can not reduce the DTD variability as much as the IGVVA, its voltage step can be decreased in order to reduce the energy consumption with almost no impact on the DTD variability. Therefore, the final decision on which algorithm to employ should be based on the specific application targeted for the RRAM array.}, language = {en} } @misc{OssorioVinuesaGarciaetal., author = {Ossorio, {\´O}scar G. and Vinuesa, Guillermo and Garcia, Hector and Sahelices, Benjamin and Due{\~n}as, Salvador and Cast{\´a}n, Helena and P{\´e}rez, Eduardo and Mahadevaiah, Mamathamba Kalishettyhalli and Wenger, Christian}, title = {Performance Assessment of Amorphous HfO2-based RRAM Devices for Neuromorphic Applications}, series = {ECS Transactions}, volume = {102}, journal = {ECS Transactions}, number = {2}, issn = {1938-6737}, doi = {10.1149/10202.0029ecst}, pages = {29 -- 35}, abstract = {The use of thin layers of amorphous hafnium oxide has been shown to be suitable for the manufacture of Resistive Random-Access memories (RRAM). These memories are of great interest because of their simple structure and non-volatile character. They are particularly appealing as they are good candidates for substituting flash memories. In this work, the performance of the MIM structure that takes part of a 4 kbit memory array based on 1-transistor-1-resistance (1T1R) cells was studied in terms of control of intermediate states and cycle durability. DC and small signal experiments were carried out in order to fully characterize the devices, which presented excellent multilevel capabilities and resistive-switching behavior.}, language = {en} } @misc{MahmoodinezhadMoralesNaumannetal., author = {Mahmoodinezhad, Ali and Morales, Carlos and Naumann, Franziska and Plate, Paul and Meyer, Robert and Janowitz, Christoph and Henkel, Karsten and Kot, Małgorzata and Z{\"o}llner, Marvin Hartwig and Wenger, Christian and Flege, Jan Ingo}, title = {Low-temperature atomic layer deposition of indium oxide thin films using trimethylindium and oxygen plasma}, series = {Journal of Vacuum Science and Technology A}, volume = {39}, journal = {Journal of Vacuum Science and Technology A}, number = {6}, issn = {0734-2101}, doi = {10.1116/6.0001375}, abstract = {Indium oxide (InxOy) thin films were deposited by plasma-enhanced atomic layer deposition (PEALD) using trimethylindium and oxygen plasma in a low-temperature range of 80-200 °C. The optical properties, chemical composition, crystallographic structure, and electrical characteristics of these layers were investigated by spectroscopic ellipsometry (SE), x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), as well as current-voltage and capacitance-voltage measurements. The SE results yielded a nearly constant growth rate of 0.56 {\AA} per cycle and a thickness inhomogeneity of ≤1.2\% across 4-in. substrates in the temperature range of 100-150 °C. The refractive index (at 632.8 nm) was found to be 2.07 for the films deposited at 150 °C. The PEALD-InxOy layers exhibit a direct (3.3 ± 0.2 eV) and an indirect (2.8 ± 0.1 eV) bandgap with an uptrend for both with increasing substrate temperature. Based on XPS characterization, all InxOy samples are free of carbon impurities and show a temperature-dependent off-stoichiometry indicating oxygen vacancies. XRD diffraction patterns demonstrate an onset of crystallization at 150 °C. Consistent with the optical, XPS, and XRD data, the films deposited at ≥150 °C possess higher electrical conductivity. Our findings prove that a low-temperature PEALD process of InxOy is feasible and promising for a high-quality thin-film deposition without chemical impurities on thermally fragile substrates.}, language = {en} } @misc{YunLeeKimetal., author = {Yun, Min Ju and Lee, Doowon and Kim, Sungho and Wenger, Christian and Kim, Hee-Dong}, title = {A nonlinear resistive switching behaviors of Ni/HfO2/TiN memory structures for self-rectifying resistive switching memory}, series = {Materials Characterization}, volume = {182}, journal = {Materials Characterization}, issn = {1044-5803}, doi = {10.1016/j.matchar.2021.111578}, pages = {7}, abstract = {This work reports forming free/self-rectifying resistive switching characteristics and dependency of the top electrode (TE) of a crystalline HfO2-based resistive switching memory device. In the memory cells, nonlinear bipolar resistive switching characteristics, i.e., an asymmetric current-voltage curve like the Schottky diode, was observed. In addition, the device exhibits resistive switching behaviors without forming process, which makes it possible to switch the resistance state under ultra-low current levels of <10 nA. In addition, compared to the resistive switching of the proposed resistive switching memory devices with different TEs, the VSET was decreased when using TE with lower work function, and the height read margin was obtained in the sample with the Ni TE, covering over 56 × 56 arrays. Consequently, these results indicate that the interface control resistive switching properties in memory structures having the Schottky junction warrant the realization of selector-free resistive switching memory cells in a high-density crossbar array.}, language = {en} } @misc{PerezBoschQuesadaPerezMahadevaiahetal., author = {Perez-Bosch Quesada, Emilio and P{\´e}rez, Eduardo and Mahadevaiah, Mamathamba Kalishettyhalli and Wenger, Christian}, title = {Memristive-based in-memory computing: from device to large-scale CMOS integration}, series = {Neuromorphic Computing and Engineering}, volume = {1}, journal = {Neuromorphic Computing and Engineering}, number = {2}, issn = {2634-4386}, doi = {10.1088/2634-4386/ac2cd4}, pages = {8}, abstract = {With the rapid emergence of in-memory computing systems based on memristive technology, the integration of such memory devices in large-scale architectures is one of the main aspects to tackle. In this work we present a study of HfO2-based memristive devices for their integration in large-scale CMOS systems, namely 200 mm wafers. The DC characteristics of single metal-insulator-metal devices are analyzed taking under consideration device-to-device variabilities and switching properties. Furthermore, the distribution of the leakage current levels in the pristine state of the samples are analyzed and correlated to the amount of formingless memristors found among the measured devices. Finally, the obtained results are fitted into a physic-based compact model that enables their integration into larger-scale simulation environments.}, language = {en} } @misc{BaroniZambelliOlivoetal., author = {Baroni, Andrea and Zambelli, Cristian and Olivo, Piero and P{\´e}rez, Eduardo and Wenger, Christian and Ielmini, Daniele}, title = {Tackling the Low Conductance State Drift through Incremental Reset and Verify in RRAM Arrays}, series = {2021 IEEE International Integrated Reliability Workshop (IIRW), South Lake Tahoe, CA, USA, 10 December 2021}, journal = {2021 IEEE International Integrated Reliability Workshop (IIRW), South Lake Tahoe, CA, USA, 10 December 2021}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, isbn = {978-1-6654-1794-5}, issn = {2374-8036}, doi = {10.1109/IIRW53245.2021.9635613}, pages = {5}, abstract = {Resistive switching memory (RRAM) is a promising technology for highly efficient computing scenarios. RRAM arrays enabled the acceleration of neural networks for artificial intelligence and the creation of In-Memory Computing circuits. However, the arrays are affected by several issues materializing in conductance variations that might cause severe performance degradation in those applications. Among those, one is related to the drift of the low conductance states appearing immediately at the end of program and verify algorithms that are fundamental for an accurate Multi-level conductance operation. In this work, we tackle the issue by developing an Incremental Reset and Verify technique showing enhanced variability and reliability features compared with a traditional refresh-based approach.}, language = {en} } @misc{RomeroZalizCantudoPerezetal., author = {Romero-Zaliz, Rocio and Cantudo, Antonio and P{\´e}rez, Eduardo and Jimenez-Molinos, Francisco and Wenger, Christian and Roldan, Juan Bautista}, title = {An Analysis on the Architecture and the Size of Quantized Hardware Neural Networks Based on Memristors}, series = {Electronics (MDPI)}, volume = {10}, journal = {Electronics (MDPI)}, number = {24}, issn = {2079-9292}, doi = {10.3390/electronics10243141}, abstract = {We have performed different simulation experiments in relation to hardware neural networks (NN) to analyze the role of the number of synapses for different NN architectures in the network accuracy, considering different datasets. A technology that stands upon 4-kbit 1T1R ReRAM arrays, where resistive switching devices based on HfO2 dielectrics are employed, is taken as a reference. In our study, fully dense (FdNN) and convolutional neural networks (CNN) were considered, where the NN size in terms of the number of synapses and of hidden layer neurons were varied. CNNs work better when the number of synapses to be used is limited. If quantized synaptic weights are included, we observed thatNNaccuracy decreases significantly as the number of synapses is reduced; in this respect, a trade-off between the number of synapses and the NN accuracy has to be achieved. Consequently, the CNN architecture must be carefully designed; in particular, it was noticed that different datasets need specific architectures according to their complexity to achieve good results. It was shown that due to the number of variables that can be changed in the optimization of a NN hardware implementation, a specific solution has to be worked in each case in terms of synaptic weight levels, NN architecture, etc.}, language = {en} } @misc{StankeWengerBieretal., author = {Stanke, Sandra and Wenger, Christian and Bier, Frank F. and H{\"o}lzel, Ralph}, title = {AC electrokinetic immobilization of influenza virus}, series = {Electrophoresis}, volume = {43}, journal = {Electrophoresis}, number = {12}, issn = {1522-2683}, doi = {10.1002/elps.202100324}, pages = {1309 -- 1321}, abstract = {The use of alternating current (AC) electrokinetic forces, like dielectrophoresis and AC electroosmosis, as a simple and fast method to immobilize sub-micrometer objects onto nanoelectrode arrays is presented. Due to its medical relevance, the influenza virus is chosen as a model organism. One of the outstanding features is that the immobilization of viral material to the electrodes can be achieved permanently, allowing subsequent handling independently from the electrical setup. Thus, by using merely electric fields, we demonstrate that the need of prior chemical surface modification could become obsolete. The accumulation of viral material over time is observed by fluorescence microscopy. The influences of side effects like electrothermal fluid flow, causing a fluid motion above the electrodes and causing an intensity gradient within the electrode array, are discussed. Due to the improved resolution by combining fluorescence microscopy with deconvolution, it is shown that the viral material is mainly drawn to the electrode edge and to a lesser extent to the electrode surface. Finally, areas of application for this functionalization technique are presented.}, language = {en} } @misc{BischoffLeisePerezBoschQuesadaetal., author = {Bischoff, Carl and Leise, Jakob and Perez-Bosch Quesada, Emilio and P{\´e}rez, Eduardo and Wenger, Christian and Kloes, Alexander}, title = {Implementation of device-to-device and cycle-to-cycle variability of memristive devices in circuit simulations}, series = {Solid-State Electronics}, volume = {194}, journal = {Solid-State Electronics}, issn = {0038-1101}, doi = {10.1016/j.sse.2022.108321}, pages = {4}, abstract = {We present a statistical procedure for the extraction of parameters of a compact model for memristive devices. Thereby, in a circuit simulation the typical fluctuations of the current-voltage (I-V) characteristics from device-to-device (D2D) and from cycle-to-cycle (C2C) can be emulated. The approach is based on the Stanford model whose parameters play a key role to integrating D2D and C2C dispersion. The influence of such variabilities over the model's parameters is investigated by using a fitting algorithm fed with experimental data. After this, the statistical distributions of the parameters are used in a Monte Carlo simulation to reproduce the I-V D2D and C2C dispersions which show a good agreement to the measured curves. The results allow the simulation of the on/off current variation for the design of RRAM cells or memristor-based artificial neural networks.}, language = {en} } @misc{MannocciBaroniMelacarneetal., author = {Mannocci, Piergiulio and Baroni, Andrea and Melacarne, Enrico and Zambelli, Cristian and Olivo, Piero and P{\´e}rez, Eduardo and Wenger, Christian and Ielmini, Daniele}, title = {In-Memory Principal Component Analysis by Crosspoint Array of Rresistive Switching Memory}, series = {IEEE Nanotechnology Magazine}, volume = {16}, journal = {IEEE Nanotechnology Magazine}, number = {2}, issn = {1932-4510}, doi = {10.1109/MNANO.2022.3141515}, pages = {4 -- 13}, abstract = {In Memory Computing (IMC) is one of the most promising candidates for data-intensive computing accelerators of machine learning (ML). A key ML algorithm for dimensionality reduction and classification is principal component analysis (PCA), which heavily relies on matrixvector multiplications (MVM) for which classic von Neumann architectures are not optimized. Here, we provide the experimental demonstration of a new IMCbased PCA algorithm based on power iteration and deflation executed in a 4-kbit array of resistive switching random-access memory (RRAM). The classification accuracy of the Wisconsin Breast Cancer data set reaches 95.43\%, close to floatingpoint implementation. Our simulations indicate a 250× improvement in energy efficiency compared to commercial GPUs, thus supporting IMC for energy-efficient ML in modern data-intensive computing.}, language = {en} } @misc{StrobelAlvaradoChavarinLeszczynskietal., author = {Strobel, Carsten and Alvarado Chavarin, Carlos and Leszczynski, Sebastian and Richter, Karola and Knaut, Martin and Reif, Johanna and V{\"o}lkel, Sandra and Albert, Matthias and Wenger, Christian and Bartha, Johann Wolfgang and Mikolajick, Thomas}, title = {Improved Graphene-base Heterojunction Transistor with Different Collector Semi-conductors for High-frequency Applications}, series = {Advanced Materials Letters}, volume = {13}, journal = {Advanced Materials Letters}, number = {1}, issn = {0976-3961}, doi = {10.5185/amlett.2022.011688}, abstract = {A new kind of transistor device with a graphene monolayer embedded between two n-type silicon layers is fabricated and characterized. The device is called graphene-base heterojunction transistor (GBHT). The base-voltage controls the current of the device flowing from the emitter via graphene to the collector. The transit time for electrons passing by the ultrathin graphene layer is extremely short which makes the device very promising for high frequency RF-electronics. The output current of the device is saturated and clearly modulated by the base voltage. Further, the silicon collector of the GBHT is replaced by germanium to improve the device performance. This enabled the collector current to be increased by almost three orders of magnitude. Also, the common-emitter current gain (Ic/Ib) increased from 10-3 to approximately 0.3 for the newly designed device. However, the ON-OFF ratio of the improved germanium based GBHT has so far been rather low. Further optimizations are necessary in order to fully exploit the potential of the graphene-base heterojunction transistor.}, language = {en} } @misc{FritscherKnoedtelMallahetal., author = {Fritscher, Markus and Kn{\"o}dtel, Johannes and Mallah, Maen and Pechmann, Stefan and Perez-Bosch Quesada, Emilio and Rizzi, Tommaso and Wenger, Christian and Reichenbach, Marc}, title = {Mitigating the Effects of RRAM Process Variation on the Accuracy of Artifical Neural Networks}, series = {Embedded Computer Systems: Architectures, Modeling, and Simulation. SAMOS 2021. Lecture Notes in Computer Science}, journal = {Embedded Computer Systems: Architectures, Modeling, and Simulation. SAMOS 2021. Lecture Notes in Computer Science}, publisher = {Springer}, isbn = {978-3-031-04579-0}, issn = {0302-9743}, doi = {10.1007/978-3-031-04580-6_27}, pages = {401 -- 417}, abstract = {Weight storage is a key challenge in the efficient implementation of artificial neural networks. Novel memory technologies such as RRAM are able to greatly improve density and introduce non-volatility and multibit capabilities to this component of ANN accelerators. The usage of RRAM in this domain comes with downsides, mainly caused by cycle-to-cycle and device-to-device variability leading to erroneous readouts, greatly affecting digital systems. ANNs have the ability to compensate for this by their inherent redundancy and usually exhibit a gradual deterioration in the accuracy of the task at hand. This means, that slight error rates can be acceptable for weight storage in an ANN accelerator. In this work we link device-to-device variability to the accuracy of an ANN for such an accelerator. From this study, we can estimate how strongly a certain net is affected by a certain device parameter variability. This methodology is then used to present three mitigation strategies and to evaluate how they affect the reaction of the network to variability: a) Dropout Layers b) Fault-Aware Training c) Redundancy. These mitigations are then evaluated by their ability to improve accuracy and to lower hardware overhead by providing data for a real-word example. We improved this network's resilience in such a way that it could tolerate double the variation in one of the device parameters (standard deviation of the oxide thickness can be 0.4 nm instead of 0.2 nm while maintaining sufficient accuracy.)}, language = {en} } @misc{MahadevaiahPerezLiskeretal., author = {Mahadevaiah, Mamathamba Kalishettyhalli and P{\´e}rez, Eduardo and Lisker, Marco and Schubert, Markus Andreas and Perez-Bosch Quesada, Emilio and Wenger, Christian and Mai, Andreas}, title = {Modulating the Filamentary-Based Resistive Switching Properties of HfO2 Memristive Devices by Adding Al2O3 Layers}, series = {Electronics : open access journal}, volume = {11}, journal = {Electronics : open access journal}, number = {10}, issn = {2079-9292}, doi = {10.3390/electronics11101540}, pages = {14}, abstract = {The resistive switching properties of HfO2 based 1T-1R memristive devices are electrically modified by adding ultra-thin layers of Al2O3 into the memristive device. Three different types of memristive stacks are fabricated in the 130 nm CMOS technology of IHP. The switching properties of the memristive devices are discussed with respect to forming voltages, low resistance state and high resistance state characteristics and their variabilities. The experimental I-V characteristics of set and reset operations are evaluated by using the quantum point contact model. The properties of the conduction filament in the on and off states of the memristive devices are discussed with respect to the model parameters obtained from the QPC fit.}, language = {en} } @misc{GlukhovMiloBaronietal., author = {Glukhov, Artem and Milo, Valerio and Baroni, Andrea and Lepri, Nicola and Zambelli, Cristian and Olivo, Piero and P{\´e}rez, Eduardo and Wenger, Christian and Ielmini, Daniele}, title = {Statistical model of program/verify algorithms in resistive-switching memories for in-memory neural network accelerators}, series = {2022 IEEE International Reliability Physics Symposium (IRPS)}, journal = {2022 IEEE International Reliability Physics Symposium (IRPS)}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, isbn = {978-1-6654-7950-9}, issn = {2473-2001}, doi = {10.1109/IRPS48227.2022.9764497}, pages = {3C.3-1 -- 3C.3-7}, abstract = {Resistive-switching random access memory (RRAM) is a promising technology for in-memory computing (IMC) to accelerate training and inference of deep neural networks (DNNs). This work presents the first physics-based statistical model describing (i) multilevel RRAM device program/verify (PV) algorithms by controlled set transition, (ii) the stochastic cycle-to-cycle (C2C) and device-to-device (D2D) variations within the array, and (iii) the impact of such imprecisions on the accuracy of DNN accelerators. The model can handle the full chain from RRAM materials/device parameters to the DNN performance, thus providing a valuable tool for device/circuit codesign of hardware DNN accelerators.}, language = {en} } @misc{JanowitzMahmoodinezhadKotetal., author = {Janowitz, Christoph and Mahmoodinezhad, Ali and Kot, Małgorzata and Morales, Carlos and Naumann, Franziska and Plate, Paul and Z{\"o}llner, Marvin Hartwig and B{\"a}rwolf, Florian and Stolarek, David and Wenger, Christian and Henkel, Karsten and Flege, Jan Ingo}, title = {Toward controlling the Al2O3/ZnO interface properties by in situ ALD preparation}, series = {Dalton Transactions}, volume = {51}, journal = {Dalton Transactions}, issn = {1477-9234}, doi = {10.1039/D1DT04008A}, pages = {9291 -- 9301}, abstract = {An Al2O3/ZnO heterojunction was grown on a Si single crystal substrate by subsequent thermal and plasma-assisted atomic layer deposition (ALD) in situ. The band offsets of the heterointerface were then studied by consecutive removal of the layers by argon sputtering, followed by in situ X-ray photoelectron spectroscopy. The valence band maximum and conduction band minimum of Al2O3 are found to be 1.1 eV below and 2.3 eV above those of ZnO, resulting in a type-I staggered heterojunction. An apparent reduction of ZnO to elemental Zn in the interface region was detected in the Zn 2p core level and Zn L3MM Auger spectra. This suggests an interface formation different from previous models. The reduction of ZnO to Zn in the interface region accompanied by the creation of oxygen vacancies in ZnO results in an upward band bending at the interface. Therefore, this study suggests that interfacial properties such as the band bending as well as the valence and conduction band offsets should be in situ controllable to a certain extent by careful selection of the process parameters.}, language = {en} } @misc{PerezMahadevaiahPerezBoschQuesadaetal., author = {P{\´e}rez, Eduardo and Mahadevaiah, Mamathamba Kalishettyhalli and Perez-Bosch Quesada, Emilio and Wenger, Christian}, title = {In-depth characterization of switching dynamics in amorphous HfO2 memristive arrays for the implementation of synaptic updating rules}, series = {Japanese Journal of Applied Physics}, volume = {61}, journal = {Japanese Journal of Applied Physics}, issn = {0021-4922}, doi = {10.35848/1347-4065/ac6a3b}, pages = {1 -- 7}, abstract = {Accomplishing truly analog conductance modulation in memristive arrays is crucial in order to implement the synaptic plasticity in hardware-based neuromorphic systems. In this paper, such a feature was addressed by exploiting the inherent stochasticity of switching dynamics in amorphous HfO2 technology. A thorough statistical analysis of experimental characteristics measured in 4 kbit arrays by using trains of identical depression/potentiation pulses with different voltage amplitudes and pulse widths provided the key to develop two different updating rules and to define their optimal programming parameters. The first rule is based on applying a specific number of identical pulses until the conductance value achieves the desired level. The second one utilized only one single pulse with a particular amplitude to achieve the targeted conductance level. In addition, all the results provided by the statistical analysis performed may play an important role in understanding better the switching behavior of this particular technology.}, language = {en} } @misc{BaroniGlukhovPerezetal., author = {Baroni, Andrea and Glukhov, Artem and P{\´e}rez, Eduardo and Wenger, Christian and Calore, Enrico and Schifano, Sebastiano Fabio and Olivo, Piero and Ielmini, Daniele and Zambelli, Cristian}, title = {An energy-efficient in-memory computing architecture for survival data analysis based on resistive switching memories}, series = {Frontiers in Neuroscience}, volume = {Vol. 16}, journal = {Frontiers in Neuroscience}, issn = {1662-4548}, doi = {10.3389/fnins.2022.932270}, pages = {1 -- 16}, abstract = {One of the objectives fostered in medical science is the so-called precision medicine, which requires the analysis of a large amount of survival data from patients to deeply understand treatment options. Tools like Machine Learning and Deep Neural Networks are becoming a de-facto standard. Nowadays, computing facilities based on the Von Neumann architecture are devoted to these tasks, yet rapidly hitting a bottleneck in performance and energy efficiency. The In-Memory Computing (IMC) architecture emerged as a revolutionary approach to overcome that issue. In this work, we propose an IMC architecture based on Resistive switching memory (RRAM) crossbar arrays to provide a convenient primitive for matrix-vector multiplication in a single computational step. This opens massive performance improvement in the acceleration of a neural network that is frequently used in survival analysis of biomedical records, namely the DeepSurv. We explored how the synaptic weights mapping strategy and the programming algorithms developed to counter RRAM non-idealities expose a performance/energy trade-off. Finally, we assessed the benefits of the proposed architectures with respect to a GPU-based realization of the same task, evidencing a tenfold improvement in terms of performance and three orders of magnitude with respect to energy efficiency.}, language = {en} } @misc{BogunPerezBoschQuesadaPerezetal., author = {Bogun, Nicolas and Perez-Bosch Quesada, Emilio and P{\´e}rez, Eduardo and Wenger, Christian and Kloes, Alexander and Schwarz, Mike}, title = {Analytical Calculation of Inference in Memristor-based Stochastic Artificial Neural Networks}, series = {29th International Conference on Mixed Design of Integrated Circuits and System (MIXDES), 23-24 June 2022 , Wrocław, Poland}, journal = {29th International Conference on Mixed Design of Integrated Circuits and System (MIXDES), 23-24 June 2022 , Wrocław, Poland}, isbn = {978-83-63578-22-0}, doi = {10.23919/MIXDES55591.2022.9838321}, pages = {83 -- 88}, abstract = {The impact of artificial intelligence on human life has increased significantly in recent years. However, as the complexity of problems rose aswell, increasing system features for such amount of data computation became troublesome due to the von Neumann's computer architecture. Neuromorphic computing aims to solve this problem by mimicking the parallel computation of a human brain. For this approach, memristive devices are used to emulate the synapses of a human brain. Yet, common simulations of hardware based networks require time consuming Monte-Carlo simulations to take into account the stochastic switching of memristive devices. This work presents an alternative concept making use of the convolution of the probability distribution functions (PDF) of memristor currents by its equivalent multiplication in Fourier domain. An artificial neural network is accordingly implemented to perform the inference stage with handwritten digits.}, language = {en} } @misc{LukosiusLukoseLiskeretal., author = {Lukosius, Mindaugas and Lukose, Rasuolė and Lisker, Marco and Luongo, G. and Elviretti, M. and Mai, Andreas and Wenger, Christian}, title = {Graphene Research in 200 mm CMOS Pilot Line}, series = {45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO), 2022}, journal = {45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO), 2022}, isbn = {978-953-233-103-5}, issn = {2623-8764}, doi = {10.23919/MIPRO55190.2022.9803362}, pages = {113 -- 117}, abstract = {Due to the unique electronic structures, graphene and other 2D Materials are considered as materials which can enable and extend the functionalities and performance in a large variety of applications, among them in microelectronics. At this point, the investigation and preparation of graphene devices in conditions resembling as close as possible the Si technology environment is of highest importance.Towards these goals, this paper focuses on the full spectra of graphene research aspects in 200mm pilot line. We investigated different process module developments such as CMOS compatible growth of high quality graphene on germanium and its growth mechanisms, transfer related challenges on target substrates, patterning, passivation and various concepts of contacting of graphene on a full 200 mm wafers. Finally, we fabricated proof-of-concept test structures e.g. TLM, Hall bars and capacitor structures to prove the feasibility of graphene processing in the pilot line of IHP.}, language = {en} } @misc{StrobelAlvaradoChavarinRichteretal., author = {Strobel, Carsten and Alvarado Chavarin, Carlos and Richter, Karola and Knaut, Martin and Reif, Johanna and Völkel, Sandra and Jahn, Andreas and Albert, Matthias and Wenger, Christian and Kirchner, Robert and Bartha, Johann Wolfgang and Mikolajick, Thomas}, title = {Novel Graphene Adjustable-Barrier Transistor with Ultra-High Current Gain}, series = {ACS Applied Materials \& Interfaces}, volume = {14}, journal = {ACS Applied Materials \& Interfaces}, number = {34}, issn = {1944-8244}, doi = {10.1021/acsami.2c10634}, pages = {39249 -- 39254}, abstract = {A graphene-based three terminal barristor device was proposed to overcome the low on/off ratios and insufficient current saturation of conventional graphene field effect transistors. In this study, we fabricated and analyzed a novel graphene-based transistor, which resembles the structure of the barristor but uses a different operating condition. This new device, termed graphene adjustable-barriers transistor (GABT), utilizes a semiconductor-based gate rather than a metal-insulator gate structure to modulate the device currents. The key feature of the device is the two graphene-semiconductor Schottky barriers with different heights that are controlled simultaneously by the gate voltage. Due to the asymmetry of the barriers, the drain current exceeds the gate current by several orders of magnitude. Thus, the GABT can be considered an amplifier with an alterable current gain. In this work, a silicon-graphene-germanium GABT with an ultra-high current gain (ID/IG up to 8 × 106) was fabricated, and the device functionality was demonstrated. Additionally, a capacitance model is applied to predict the theoretical device performance resulting in an on-off ratio above 106, a swing of 87 mV/dec, and a drivecurrent of about 1 × 106 A/cm2.}, language = {en} } @misc{BaroniGlukhovPerezetal., author = {Baroni, Andrea and Glukhov, Artem and P{\´e}rez, Eduardo and Wenger, Christian and Ielmini, Daniele and Olivo, Piero and Zambelli, Cristian}, title = {Low Conductance State Drift Characterization and Mitigation in Resistive Switching Memories (RRAM) for Artificial Neural Networks}, series = {IEEE Transactions on Device and Materials Reliability}, volume = {22}, journal = {IEEE Transactions on Device and Materials Reliability}, number = {3}, issn = {1530-4388}, doi = {10.1109/TDMR.2022.3182133}, pages = {340 -- 347}, abstract = {The crossbar structure of Resistive-switching random access memory (RRAM) arrays enabled the In-Memory Computing circuits paradigm, since they imply the native acceleration of a crucial operations in this scenario, namely the Matrix-Vector-Multiplication (MVM). However, RRAM arrays are affected by several issues materializing in conductance variations that might cause severe performance degradation. A critical one is related to the drift of the low conductance states appearing immediately at the end of program and verify algorithms that are mandatory for an accurate multi-level conductance operation. In this work, we analyze the benefits of a new programming algorithm that embodies Set and Reset switching operations to achieve better conductance control and lower variability. Data retention analysis performed with different temperatures for 168 hours evidence its superior performance with respect to standard programming approach. Finally, we explored the benefits of using our methodology at a higher abstraction level, through the simulation of an Artificial Neural Network for image recognition task (MNIST dataset). The accuracy achieved shows higher performance stability over temperature and time.}, language = {en} } @misc{PrueferWengerBieretal., author = {Pr{\"u}fer, Mareike and Wenger, Christian and Bier, Frank F. and Laux, Eva-Maria and H{\"o}lzel, Ralph}, title = {Activity of AC electrokinetically immobilized horseradish peroxidase}, series = {Electrophoresis}, volume = {43}, journal = {Electrophoresis}, number = {18-19}, issn = {1522-2683}, doi = {10.1002/elps.202200073}, pages = {1920 -- 1933}, abstract = {Dielectrophoresis(DEP) is an AC electrokinetic effect mainly used to manipulate cells.Smaller particles,like virions,antibodies,enzymes,andevendyemolecules can be immobilized by DEP as well. In principle, it was shown that enzymesare active after immobilization by DEP, but no quantification of the retainedactivity was reported so far. In this study, the activity of the enzyme horseradishperoxidase (HRP) is quantified after immobilization by DEP. For this, HRP is immobilized on regular arrays of titanium nitride ring electrodes of 500 nm diameter and 20 nm widths. The activity of HRP on the electrode chip is measured with a limit of detection of 60 fg HRP by observing the enzymatic turnover of Amplex Red and H2O2 to fluorescent resoruf in by fluorescence microscopy. The initial activity of the permanently immobilized HRP equals up to 45\% of the activity that can be expected for an ideal monolayer of HRP molecules on all electrodes of the array. Localization of the immobilizate on the electrodesis accomplished by staining with the fluorescent product of the enzyme reac-tion.The high residual activity of enzymes after AC field induced immobilization shows the method's suitability for biosensing and research applications.}, language = {en} } @misc{FranckDabrowskiSchubertetal., author = {Franck, Max and Dabrowski, Jaroslaw and Schubert, Markus Andreas and Wenger, Christian and Lukosius, Mindaugas}, title = {Towards the Growth of Hexagonal Boron Nitride on Ge(001)/Si Substrates by Chemical Vapor Deposition}, series = {Nanomaterials}, volume = {12}, journal = {Nanomaterials}, number = {19}, issn = {2079-4991}, doi = {10.3390/nano12193260}, abstract = {The growth of hexagonal boron nitride (hBN) on epitaxial Ge(001)/Si substrates via high-vacuum chemical vapor deposition from borazine is investigated for the first time in a systematic manner. The influences of the process pressure and growth temperature in the range of 10-7-10-3 mbar and 900-980 °C, respectively, are evaluated with respect to morphology, growth rate, and crystalline quality of the hBN films. At 900 °C, nanocrystalline hBN films with a lateral crystallite size of ~2-3 nm are obtained and confirmed by high-resolution transmission electron microscopy images. X-ray photoelectron spectroscopy confirms an atomic N:B ratio of 1 ± 0.1. A three-dimensional growth mode is observed by atomic force microscopy. Increasing the process pressure in the reactor mainly affects the growth rate, with only slight effects on crystalline quality and none on the principle growth mode. Growth of hBN at 980 °C increases the average crystallite size and leads to the formation of 3-10 well-oriented, vertically stacked layers of hBN on the Ge surface. Exploratory ab initio density functional theory simulations indicate that hBN edges are saturated by hydrogen, and it is proposed that partial de-saturation by H radicals produced on hot parts of the set-up is responsible for the growth}, language = {en} } @misc{GlukhovLepriMiloetal., author = {Glukhov, Artem and Lepri, Nicola and Milo, Valerio and Baroni, Andrea and Zambelli, Cristian and Olivo, Piero and P{\´e}rez, Eduardo and Wenger, Christian and Ielmini, Daniele}, title = {End-to-end modeling of variability-aware neural networks based on resistive-switching memory arrays}, series = {Proc. 30th IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC 2022)}, journal = {Proc. 30th IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC 2022)}, doi = {10.1109/VLSI-SoC54400.2022.9939653}, pages = {1 -- 5}, abstract = {Resistive-switching random access memory (RRAM) is a promising technology that enables advanced applications in the field of in-memory computing (IMC). By operating the memory array in the analogue domain, RRAM-based IMC architectures can dramatically improve the energy efficiency of deep neural networks (DNNs). However, achieving a high inference accuracy is challenged by significant variation of RRAM conductance levels, which can be compensated by (i) advanced programming techniques and (ii) variability-aware training (VAT) algorithms. In both cases, however, detailed knowledge and accurate physics-based statistical models of RRAM are needed to develop programming and VAT methodologies. This work presents an end-to-end approach to the development of highly-accurate IMC circuits with RRAM, encompassing the device modeling, the precise programming algorithm, and the VAT simulations to maximize the DNN classification accuracy in presence of conductance variations.}, language = {en} } @misc{WenBaroniPerezetal., author = {Wen, Jianan and Baroni, Andrea and P{\´e}rez, Eduardo and Ulbricht, Markus and Wenger, Christian and Krstic, Milos}, title = {Evaluating Read Disturb Effect on RRAM based AI Accelerator with Multilevel States and Input Voltages}, series = {2022 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)}, journal = {2022 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)}, isbn = {978-1-6654-5938-9}, issn = {2765-933X}, doi = {10.1109/DFT56152.2022.9962345}, pages = {1 -- 6}, abstract = {RRAM technology is a promising candidate for implementing efficient AI accelerators with extensive multiply-accumulate operations. By scaling RRAM devices to the synaptic crossbar array, the computations can be realized in situ, avoiding frequent weights transfer between the processing units and memory. Besides, as the computations are conducted in the analog domain with high flexibility, applying multilevel input voltages to the RRAM devices with multilevel conductance states enhances the computational efficiency further. However, several non-idealities existing in emerging RRAM technology may degrade the reliability of the system. In this paper, we measured and investigated the impact of read disturb on RRAM devices with different input voltages, which incurs conductance drifts and introduces errors. The measured data are deployed to simulate the RRAM based AI inference engines with multilevel states.}, language = {en} } @misc{PerezMaldonadoPerezBoschQuesadaetal., author = {P{\´e}rez, Eduardo and Maldonado, David and Perez-Bosch Quesada, Emilio and Mahadevaiah, Mamathamba Kalishettyhalli and Jimenez-Molinos, Francisco and Wenger, Christian}, title = {Parameter Extraction Methods for Assessing Device-to-Device and Cycle-to-Cycle Variability of Memristive Devices at Wafer Scale}, series = {IEEE Transactions on Electron Devices}, volume = {70}, journal = {IEEE Transactions on Electron Devices}, number = {1}, issn = {0018-9383}, doi = {10.1109/TED.2022.3224886}, pages = {360 -- 365}, abstract = {The stochastic nature of the resistive switching (RS) process in memristive devices makes device-to-device (DTD) and cycle-to-cycle (CTC) variabilities relevant magnitudes to be quantified and modeled. To accomplish this aim, robust and reliable parameter extraction methods must be employed. In this work, four different extraction methods were used at the production level (over all the 108 devices integrated on 200-mm wafers manufactured in the IHP 130-nm CMOS technology) in order to obtain the corresponding collection of forming, reset, and set switching voltages. The statistical analysis of the experimental data (mean and standard deviation (SD) values) was plotted by using heat maps, which provide a good summary of the whole data at a glance and, in addition, an easy manner to detect inhomogeneities in the fabrication process.}, language = {en} } @misc{NitschRatzkePozarowskaetal., author = {Nitsch, Paul-G. and Ratzke, Markus and Pozarowska, Emilia and Flege, Jan Ingo and Alvarado Chavarin, Carlos and Wenger, Christian and Fischer, Inga Anita}, title = {Deposition of reduced ceria thin films by reactive magnetron sputtering for the development of a resistive gas sensor}, series = {Verhandlungen der DPG, Berlin 2024}, journal = {Verhandlungen der DPG, Berlin 2024}, publisher = {Deutsche Physikalische Gesellschaft}, address = {Bad Honnef}, issn = {0420-0195}, abstract = {The use of cerium oxide for hydrogen sensing is limited by the low electrical conductivity of layers deposited from a ceria target. To increase the electrical conductivity, partially reduced cerium oxide layers were obtained from a metallic cerium target by reactive magnetron sputtering. The proportions of the oxidation states Ce3+, present in reduced species, and Ce4+, present in fully oxidized species, were determined by ex-situ XPS. For electrical characterization, films were deposited on planarized tungsten finger electrodes. IV curves were measured over several days to investigate possible influences of oxygen and humidity on electrical conductivity. The morphological stability of the layers under ambient conditions was investigated by microscopical methods. The XPS results show a significant amount of Ce3+ in the layers. The electrical conductivity of as-grown samples is several orders of magnitude higher than that of samples grown from a ceria target. However, the conductivity decreases over time, indicating an oxidation of the layers. The surface morphology of the samples was found to be changing drastically within days, leading to partial delamination.}, language = {en} } @misc{StrobelAlvaradoChavarinKnautetal., author = {Strobel, Carsten and Alvarado Chavarin, Carlos and Knaut, Martin and V{\"o}lkel, Sandra and Albert, Matthias and Hiess, Andre and Max, Benjamin and Wenger, Christian and Kirchner, Robert and Mikolajick, Thomas}, title = {High Gain Graphene Based Hot Electron Transistor with Record High Saturated Output Current Density}, series = {Advanced Electronic Materials}, volume = {10}, journal = {Advanced Electronic Materials}, number = {2}, issn = {2199-160X}, doi = {10.1002/aelm.202300624}, abstract = {Hot electron transistors (HETs) represent an exciting frontier in semiconductor technology, holding the promise of high-speed and high-frequency electronics. With the exploration of two-dimensional materials such as graphene and new device architectures, HETs are poised to revolutionize the landscape of modern electronics. This study highlights a novel HET structure with a record output current density of 800 A/cm² and a high current gain α, fabricated using a scalable fabrication approach. The HET structure comprises two-dimensional hexagonal boron nitride (hBN) and graphene layers wet transferred to a germanium substrate. The combination of these materials results in exceptional performance, particularly in terms of the highly saturated output current density. The scalable fabrication scheme used to produce the HET opens up opportunities for large-scale manufacturing. This breakthrough in HET technology holds promise for advanced electronic applications, offering high current capabilities in a practical and manufacturable device.}, language = {en} } @misc{PechmannPerezWengeretal., author = {Pechmann, Stefan and P{\´e}rez, Eduardo and Wenger, Christian and Hagelauer, Amelie}, title = {A current mirror Based read circuit design with multi-level capability for resistive switching deviceb}, series = {2024 International Conference on Electronics, Information, and Communication (ICEIC)}, journal = {2024 International Conference on Electronics, Information, and Communication (ICEIC)}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, isbn = {979-8-3503-7188-8}, issn = {2767-7699}, doi = {10.1109/ICEIC61013.2024.10457188}, pages = {4}, abstract = {This paper presents a read circuit design for resistive memory cells based on current mirrors. The circuit utilizes high-precision current mirrors and reference cells to determine the state of resistive memory using comparators. It offers a high degree in adaptability in terms of both resistance range and number of levels. Special emphasis was put on device protection to prevent accidental programming of the memory during read operations. The realized circuit can resolve eight states with a resolution of up to 1 k Ω, realizing a digitization of the analog memory information. Furthermore, the integration in a complete memory macro is shown. The circuit was realized in a 130 nm-process but can easily be adapted to other processes and resistive memory technologies.}, language = {en} } @misc{NikiruyPerezBaronietal., author = {Nikiruy, Kristina and P{\´e}rez, Eduardo and Baroni, Andrea and Dorai Swamy Reddy, Keerthi and Pechmann, Stefan and Wenger, Christian and Ziegler, Martin}, title = {Blooming and pruning: learning from mistakes with memristive synapses}, series = {Scientific Reports}, volume = {14}, journal = {Scientific Reports}, number = {1}, issn = {2045-2322}, doi = {10.1038/s41598-024-57660-4}, abstract = {AbstractBlooming and pruning is one of the most important developmental mechanisms of the biological brain in the first years of life, enabling it to adapt its network structure to the demands of the environment. The mechanism is thought to be fundamental for the development of cognitive skills. Inspired by this, Chialvo and Bak proposed in 1999 a learning scheme that learns from mistakes by eliminating from the initial surplus of synaptic connections those that lead to an undesirable outcome. Here, this idea is implemented in a neuromorphic circuit scheme using CMOS integrated HfO2-based memristive devices. The implemented two-layer neural network learns in a self-organized manner without positive reinforcement and exploits the inherent variability of the memristive devices. This approach provides hardware, local, and energy-efficient learning. A combined experimental and simulation-based parameter study is presented to find the relevant system and device parameters leading to a compact and robust memristive neuromorphic circuit that can handle association tasks.}, language = {en} } @inproceedings{WenVargasZhuetal., author = {Wen, Jianan and Vargas, Fabian Luis and Zhu, Fukun and Reiser, Daniel and Baroni, Andrea and Fritscher, Markus and P{\´e}rez, Eduardo and Reichenbach, Marc and Wenger, Christian and Krstic, Milos}, title = {Cycle-Accurate FPGA Emulation of RRAM Crossbar Array: Efficient Device and Variability Modeling with Energy Consumption Assessment}, series = {2024 IEEE 25th Latin American Test Symposium (LATS)}, booktitle = {2024 IEEE 25th Latin American Test Symposium (LATS)}, publisher = {IEEE}, doi = {10.1109/LATS62223.2024.10534601}, pages = {6}, abstract = {Emerging device technologies such as resistive RAM (RRAM) are increasingly recognized in enhancing system performance, particularly in applications demanding extensive vector-matrix multiplications (VMMs) with high parallelism. However, a significant limitation in current electronics design automation (EDA) tools is their lack of support for rapid prototyping, design space exploration, and the integration of inherent process-dependent device variability into system-level simulations, which is essential for assessing system reliability. To address this gap, we introduce a field-programmable gate array (FPGA) based emulation approach for RRAM crossbars featuring cycle-accurate emulations in real time without relying on complex device models. Our approach is based on pre-generated look-up tables (LUTs) to accurately represent the RRAM device behavior. To efficiently model the device variability at the system level, we propose using the multivariate kernel density estimation (KDE) method to augment the measured RRAM data. The proposed emulator allows precise latency determination for matrix mapping and computation operations. Meanwhile, by coupling with the NeuroSim framework, the corresponding energy consumption can be estimated. In addition to facilitating a range of in-depth system assessments, experimental results suggest a remarkable reduction of emulation time compared to the classic behavioral simulation.}, language = {en} } @misc{DoraiSwamyReddyPerezBaronietal., author = {Dorai Swamy Reddy, Keerthi and P{\´e}rez, Eduardo and Baroni, Andrea and Mahadevaiah, Mamathamba Kalishettyhalli and Marschmeyer, Steffen and Fraschke, Mirko and Lisker, Marco and Wenger, Christian and Mai, Andreas}, title = {Optimization of technology processes for enhanced CMOS-integrated 1T-1R RRAM device performance}, series = {The European Physical Journal B}, volume = {97}, journal = {The European Physical Journal B}, publisher = {Springer Science and Business Media LLC}, issn = {1434-6028}, doi = {10.1140/epjb/s10051-024-00821-1}, pages = {9}, abstract = {Implementing artificial synapses that emulate the synaptic behavior observed in the brain is one of the most critical requirements for neuromorphic computing. Resistive random-access memories (RRAM) have been proposed as a candidate for artificial synaptic devices. For this applicability, RRAM device performance depends on the technology used to fabricate the metal-insulator-metal (MIM) stack and the technology chosen for the selector device. To analyze these dependencies, the integrated RRAM devices in a 4k-bit array are studied on a 200 mm wafer scale in this work. The RRAM devices are integrated into two different CMOS transistor technologies of IHP, namely 250 nm and 130 nm and the devices are compared in terms of their pristine state current. The devices in 130 nm technology have shown lower number of high pristine state current devices per die in comparison to the 250 nm technology. For the 130 nm technology, the forming voltage is reduced due to the decrease of HfO2 dielectric thickness from 8 nm to 5 nm. Additionally, 5\% Al-doped 4 nm HfO2 dielectric displayed a similar reduction in forming voltage and a lower variation in the values. Finally, the multi-level switching between the dielectric layers in 250 nm and 130 nm technologies are compared, where 130 nm showed a more significant number of conductance levels of seven compared to only four levels observed in 250 nm technology.}, language = {en} } @misc{JiaPechmannMarkusetal., author = {Jia, Ruolan and Pechmann, Stefan and Markus, Fritscher and Wenger, Christian and Zhang, Lei and Hagelauer, Amelie}, title = {Soft-Error Analysis of RRAM 1T1R Compute-In-Memory Core for Artificial Neural Networks}, series = {2024 39th Conference on Design of Circuits and Integrated Systems (DCIS)}, journal = {2024 39th Conference on Design of Circuits and Integrated Systems (DCIS)}, publisher = {IEEE}, doi = {10.1109/DCIS62603.2024.10769203}, pages = {1 -- 5}, abstract = {This work analyses SEU-induced soft-errors in analog compute-in-memory cores using resistive random-access memory (RRAM) for artificial neural networks, where their bitcells utilize one-transistor-one-RRAM (1T1R) structure. This is modeled by combining the Stanford-PKU RRAM Model and the model of the radiation-induced photocurrent in access transistors. As results, this work derives the maximal RRAM crossbar size without occurring any logic flip and indicates the requirements for RRAM technology to achieve a SEU-resilient 1T1R compute-in memory cores.}, language = {en} } @misc{PerezBoschQuesadaMistroniJiaetal., author = {Perez-Bosch Quesada, Emilio and Mistroni, Alberto and Jia, Ruolan and Dorai Swamy Reddy, Keerthi and Reichmann, Felix and Castan, Helena and Due{\~n}as, Salvador and Wenger, Christian and Perez, Eduardo}, title = {Forming and resistive switching of HfO₂-based RRAM devices at cryogenic temperature}, series = {IEEE Electron Device Letters}, volume = {45}, journal = {IEEE Electron Device Letters}, number = {12}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, issn = {0741-3106}, doi = {10.1109/LED.2024.3485873}, pages = {2391 -- 2394}, abstract = {Reliable data storage technologies able to operate at cryogenic temperatures are critical to implement scalable quantum computers and develop deep-space exploration systems, among other applications. Their scarce availability is pushing towards the development of emerging memories that can perform such storage in a non-volatile fashion. Resistive Random-Access Memories (RRAM) have demonstrated their switching capabilities down to 4K. However, their operability at lower temperatures still remain as a challenge. In this work, we demonstrate for the first time the forming and resistive switching capabilities of CMOS-compatible RRAM devices at 1.4K. The HfO2-based devices are deployed following an array of 1-transistor-1-resistor (1T1R) cells. Their switching performance at 1.4K was also tested in the multilevel-cell (MLC) approach, storing up to 4 resistance levels per cell.}, language = {en} } @misc{WeisshauptSuergersBloosetal., author = {Weißhaupt, David and S{\"u}rgers, Christoph and Bloos, Dominik and Funk, Hannes Simon and Oehme, Michael and Fischer, Gerda and Schubert, Markus Andreas and Wenger, Christian and van Slageren, Joris and Fischer, Inga Anita and Schulze, J{\"o}rg}, title = {Lateral Mn5Ge3 spin-valve in contact with a high-mobility Ge two-dimensional hole gas}, series = {Semiconductor Science and Technology}, volume = {39}, journal = {Semiconductor Science and Technology}, number = {12}, publisher = {IOP Publishing}, issn = {0268-1242}, doi = {10.1088/1361-6641/ad8d06}, pages = {1 -- 10}, abstract = {Abstract Ge two-dimensional hole gases (2DHG) in strained modulation-doped quantum-wells represent a promising material platform for future spintronic applications due to their excellent spin transport properties and the theoretical possibility of efficient spin manipulation. Due to the continuous development of epitaxial growth recipes extreme high hole mobilities and low effective masses can be achieved, promising an efficient spin transport. Furthermore, the Ge 2DHG can be integrated in the well-established industrial complementary metal-oxide-semiconductor (CMOS) devices technology. However, efficient electrical spin injection into a Ge 2DHG—an essential prerequisite for the realization of spintronic devices—has not yet been demonstrated. In this work, we report the fabrication and low-temperature magnetoresistance (MR) measurements of a laterally structured Mn5Ge3/Ge 2DHG/ Mn5Ge3 device. The ferromagnetic Mn5Ge3 contacts are grown directly into the Ge quantum well by means of an interdiffusion process with a spacing of approximately 130 nm, forming a direct electrical contact between the ferromagnetic metal and the Ge 2DHG. Here, we report for the first time a clear MR signal for temperatures below 13 K possibly arising from successful spin injection into the high mobility Ge 2DHG. The results represent a step forward toward the realization of CMOS compatible spintronic devices based on a 2DHG.}, language = {en} } @misc{CapistaLukoseMajnoonetal., author = {Capista, Daniele and Lukose, Rasuole and Majnoon, Farnaz and Lisker, Marco and Wenger, Christian and Lukosius, Mindaugas}, title = {Optimization of the metal deposition process for the accurate estimation of Low Metal-Graphene Contact-Resistance}, series = {47th MIPRO ICT and Electronics Convention (MIPRO), 20-24 May 2024, Opatija, Croatia}, journal = {47th MIPRO ICT and Electronics Convention (MIPRO), 20-24 May 2024, Opatija, Croatia}, isbn = {979-8-3503-8250-1}, issn = {2623-8764}, doi = {10.1109/MIPRO60963.2024.10569895}, pages = {5}, language = {en} } @misc{MaldonadoCantudoSwamyReddyetal., author = {Maldonado, David and Cantudo, Antonio and Swamy Reddy, Keerthi Dorai and Pechmann, Stefan and Uhlmann, Max and Wenger, Christian and Roldan, Juan Bautista and P{\´e}rez, Eduardo}, title = {Influence of stop and gate voltage on resistive switching of 1T1R HfO2-based memristors, a modeling and variability analysis}, series = {Materials Science in Semiconductor Processing}, volume = {182}, journal = {Materials Science in Semiconductor Processing}, issn = {1873-4081}, doi = {10.1016/j.mssp.2024.108726}, pages = {9}, language = {en} } @misc{KostoTschammerMoralesetal., author = {Kosto, Yuliia and Tschammer, Rudi and Morales, Carlos and Henkel, Karsten and Flege, Jan Ingo and Ratzke, Markus and Fischer, Inga Anita and Costina, Ioan and Alvarado Chavarin, Carlos and Wenger, Christian}, title = {Rational design and development of room temperature hydrogen sensors compatible with CMOS technology: a necessary step for the coming renewable hydrogen economy}, series = {Proceedings of iCampus Conference Cottbus 2024}, journal = {Proceedings of iCampus Conference Cottbus 2024}, publisher = {AMA Service GmbH}, address = {Wunstorf}, isbn = {978-3-910600-00-3}, doi = {10.5162/iCCC2024/P21}, pages = {182 -- 185}, abstract = {The transition towards a new, renewable energy system based on green energy vectors, such as hydrogen, requires not only direct energy conversion and storage systems, but also the development of auxiliary components, such as highly sensitive hydrogen gas sensors integrated into mass devices that operate at ambient conditions. Despite the recent advances in nanostructured metal oxide thin films in terms of simple fabrication processes and compatibility with integrated circuits, high sensitivity, and short response/recovery times usually require the use of expensive noble metals or elevated tem-peratures (>250 ºC), which results in high power consumption and poor long-term stability. This article presents the first steps of the work on developing a novel resistive hydrogen gas sensor based on ultrathin cerium oxide films, compatible with complementary metal oxide semiconductor technology and capable of operating at room temperature. Here, we show a multidisciplinary bottom-up approach combining different work areas for the sensor development, such as sensor architecture, sensing mechanism and deposition strategy of the active layer, electrical contact design depending on the desired electrical output, and fast testing under controlled environments.}, language = {en} } @misc{VinuesaGarciaPerezetal., author = {Vinuesa, Guillermo and Garc{\´i}a, H{\´e}ctor and P{\´e}rez, Eduardo and Wenger, Christian and {\´I}{\~n}iguez de la Torre, Ignacio and Gonz{\´a}lez, Tom{\´a}s and Due{\~n}as, Salvador and Cast{\´a}n, Helena}, title = {On the asymmetry of Resistive Switching Transitions}, series = {Electronics}, volume = {13}, journal = {Electronics}, number = {13}, publisher = {MDPI}, issn = {2079-9292}, doi = {10.3390/electronics13132639}, pages = {11}, abstract = {In this study, the resistive switching phenomena in TiN/Ti/HfO2/Ti metal-insulator-metal stacks is investigated, mainly focusing on the analysis of set and reset transitions. The electrical measurements in a wide temperature range reveal that the switching transitions require less voltage (and thus, less energy) as temperature rises, with the reset process being much more temperature sensitive. The main conduction mechanism in both resistance states is Space-charge-limited Conduction, but the high conductivity state also shows Schottky emission, explaining its temperature dependence. Moreover, the temporal evolution of these transitions reveals clear differences between them, as their current transient response is completely different. While the set is sudden, the reset process development is clearly non-linear, closely resembling a sigmoid function. This asymmetry between switching processes is of extreme importance in the manipulation and control of the multi-level characteristics and has clear implications in the possible applications of resistive switching devices in neuromorphic computing.}, language = {en} } @misc{StrobelAlvaradoChavarinKnautetal., author = {Strobel, Carsten and Alvarado Chavarin, Carlos and Knaut, Martin and Albert, Matthias and Heinzig, Andr{\´e} and Gummadi, Likhith and Wenger, Christian and Mikolajick, Thomas}, title = {p-Type Schottky contacts for graphene adjustable-Barrier phototransistors}, series = {Nanomaterials}, volume = {14}, journal = {Nanomaterials}, number = {13}, editor = {Giannazzo, Filippo and Agnello, Simonpietro and Seravalli, Luca and Bondino, Federica}, publisher = {MDPI}, issn = {2079-4991}, doi = {10.3390/nano14131140}, abstract = {The graphene adjustable-barriers phototransistor is an attractive novel device for potential high speed and high responsivity dual-band photodetection. In this device, graphene is embedded between the semiconductors silicon and germanium. Both n-type and p-type Schottky contacts between graphene and the semiconductors are required for this device. While n-type Schottky contacts are widely investigated, reports about p-type Schottky contacts between graphene and the two involved semiconductors are scarce. In this study, we demonstrate a p-type Schottky contact between graphene and p-germanium. A clear rectification with on-off ratios of close to 10 3 (±5 V) and a distinct photoresponse at telecommunication wavelengths in the infrared are achieved. Further, p-type silicon is transferred to or deposited on graphene, and we also observe rectification and photoresponse in the visible range for some of these p-type Schottky junctions. These results are an important step toward the realization of functional graphene adjustable-barrier phototransistors.}, language = {en} } @misc{MoralesPlateMarthetal., author = {Morales, Carlos and Plate, Paul and Marth, Ludwig and Naumann, Franziska and Kot, Małgorzata and Janowitz, Christoph and Kus, Peter and Z{\"o}llner, Marvin Hartwig and Wenger, Christian and Henkel, Karsten and Flege, Jan Ingo}, title = {Bottom-up design of a supercycle recipe for atomic layer deposition of tunable Indium Gallium Zinc Oxide thin films}, series = {ACS Applied Electronic Materials}, volume = {6}, journal = {ACS Applied Electronic Materials}, number = {8}, publisher = {American Chemical Society (ACS)}, issn = {2637-6113}, doi = {10.1021/acsaelm.4c00730}, pages = {5694 -- 5704}, abstract = {We present a successful bottom-up approach to design a generic plasma-enhanced atomic layer deposition (PEALD) supercycle recipe to grow high-quality indium gallium zinc oxide (IGZO) thin films with tunable composition at a relatively low temperature of 150 °C. In situ real-time ellipsometric characterization in combination with ex situ complementary techniques has been used to optimize the deposition process and quality of the films by identifying and solving growth challenges such as degree of oxidation, nucleation delays, or elemental composition. The developed supercycle approach enables facile control of the target composition by adapting the subcycle ratios within the supercycle process. Compared to other low-temperature deposition techniques resulting in amorphous films, our PEALD-IGZO process at 150 °C results in nearly amorphous, nanocrystalline films. The preparation of IGZO films at low temperature by a supercycle PEALD approach allows controlling the thickness, composition, and electrical properties while preventing thermally induced segregation.}, language = {en} } @misc{HayatRatzkeAlvaradoChavarinetal., author = {Hayat, Ahsan and Ratzke, Markus and Alvarado Chavarin, Carlos and Z{\"o}llner, Marvin Hartwig and Corley-Wiciak, Agnieszka Anna and Schubert, Markus Andreas and Wenger, Christian and Fischer, Inga Anita}, title = {Structural and morphological properties of CeO2 films deposited by radio frequency magnetron sputtering for back-end-of-line integration}, series = {Thin Solid Films}, volume = {807}, journal = {Thin Solid Films}, issn = {0040-6090}, doi = {10.1016/j.tsf.2024.140547}, pages = {3}, language = {en} } @misc{FritscherSinghRizzietal., author = {Fritscher, Markus and Singh, Simranjeet and Rizzi, Tommaso and Baroni, Andrea and Reiser, Daniel and Mallah, Maen and Hartmann, David and Bende, Ankit and Kempen, Tim and Uhlmann, Max and Kahmen, Gerhard and Fey, Dietmar and Rana, Vikas and Menzel, Stephan and Reichenbach, Marc and Krstic, Milos and Merchant, Farhad and Wenger, Christian}, title = {A flexible and fast digital twin for RRAM systems applied for training resilient neural networks}, series = {Scientific Reports}, volume = {14}, journal = {Scientific Reports}, number = {1}, publisher = {Springer Science and Business Media LLC}, issn = {2045-2322}, doi = {10.1038/s41598-024-73439-z}, pages = {13}, abstract = {Resistive Random Access Memory (RRAM) has gained considerable momentum due to its non-volatility and energy efficiency. Material and device scientists have been proposing novel material stacks that can mimic the "ideal memristor" which can deliver performance, energy efficiency, reliability and accuracy. However, designing RRAM-based systems is challenging. Engineering a new material stack, designing a device, and experimenting takes significant time for material and device researchers. Furthermore, the acceptability of the device is ultimately decided at the system level. We see a gap here where there is a need for facilitating material and device researchers with a "push button" modeling framework that allows to evaluate the efficacy of the device at system level during early device design stages. Speed, accuracy, and adaptability are the fundamental requirements of this modelling framework. In this paper, we propose a digital twin (DT)-like modeling framework that automatically creates RRAM device models from device measurement data. Furthermore, the model incorporates the peripheral circuit to ensure accurate energy and performance evaluations. We demonstrate the DT generation and DT usage for multiple RRAM technologies and applications and illustrate the achieved performance of our GPU implementation. We conclude with the application of our modeling approach to measurement data from two distinct fabricated devices, validating its effectiveness in a neural network processing an Electrocardiogram (ECG) dataset and incorporating Fault Aware Training (FAT).}, language = {en} } @misc{LukosiusLukoseDubeyetal., author = {Lukosius, Mindaugas and Lukose, Rasuolė and Dubey, P. K. and Raju, A. I. and Capista, Daniele and Lisker, Marco and Mai, A. and Wenger, Christian}, title = {Graphene for photonic applications}, series = {2024 47th MIPRO ICT and Electronics Convention (MIPRO)}, journal = {2024 47th MIPRO ICT and Electronics Convention (MIPRO)}, publisher = {IEEE}, isbn = {979-8-3503-8250-1}, issn = {2623-8764}, doi = {10.1109/MIPRO60963.2024.10569652}, pages = {1614 -- 1618}, abstract = {Integrating graphene into Silicon Complementary Metal-Oxide-Semiconductor (CMOS) technology for photonic applications holds immense promise, but it encounters challenges in establishing large-scale graphene processes. These challenges encompass growth through techniques like Chemical Vapor Deposition (CVD), transfer, encapsulation, and contact formation within a routine 200mm wafer pilot line typically utilized for integrated circuit fabrication. This study is dedicated to exploring various facets of graphene research within a 200 mm pilot line, with a focus on overcoming challenges through the fabrication of proof-of-concept photonic graphene-based devices. The synthesis of graphene targeted epi-Ge(100)/Si(100) substrates, grown within the IHP pilot line, showcasing the potential for high-quality graphene deposition across 200mm wafers. Alternatively, employing different orientations such as (110) has been explored to enhance graphene mobility, achieving a remarkable mobility of 2300 cm 2 /Vs at present. The study systematically investigates graphene quality, thickness, and homogeneity utilizing techniques such as Raman spectroscopy, Atomic Force Microscopy (AFM), and Scanning Electron Microscopy (SEM). Additionally, simulations and fabrication of the graphene ring modulators have been conducted at both the component and device levels, incorporating realistic graphene properties. These results indicate a modulation depth of 1.6 dB/μm and a 3dB bandwidth of 7 GHz, showcasing the potential of graphene-based photonic devices for high-speed communication applications.}, language = {en} } @misc{FritscherWengerKrstic, author = {Fritscher, Markus and Wenger, Christian and Krstic, Milos}, title = {From device to application - integrating RRAM Accelerator Blocks into large AI systems}, series = {2024 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)}, journal = {2024 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)}, publisher = {IEEE}, isbn = {979-8-3503-5411-9}, issn = {2159-3477}, doi = {10.1109/ISVLSI61997.2024.00111}, pages = {592 -- 592}, abstract = {This work provides an introduction to design methodologies for RRAM-based systems. We illustrate the impact of device variation on the performance of neural networks and propose a circuit-level integration approach for RRAM-based compute blocks. Moreover, we demonstrate a possible architectural integration by incorporating RRAM-based VMM blocks fabricated in a 130 nm CMOS process into a RISC-V.}, language = {en} } @misc{FritscherUhlmannOstrovskyyetal., author = {Fritscher, Markus and Uhlmann, Max and Ostrovskyy, Philip and Reiser, Daniel and Chen, Junchao and Schubert, Andreas and Schulze, Carsten and Kahmen, Gerhard and Fey, Dietmar and Reichenbach, Marc and Krstic, Milos and Wenger, Christian}, title = {Area-efficient digital design using RRAM-CMOS standard cells}, series = {2024 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)}, volume = {18}, journal = {2024 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)}, publisher = {IEEE}, isbn = {979-8-3503-5411-9}, issn = {2159-3477}, doi = {10.1109/ISVLSI61997.2024.00026}, pages = {81 -- 87}, abstract = {Extending the scalability of digital integrated circuits through novel device concepts is an attractive option. Among these concepts, resistive random access memory (RRAM) devices allow fast and nonvolatile operation. However, building large memristive systems is still challenging since large analog circuits have to be designed and integrated. In this paper, we propose a novel solution - the implementation of digital standard cells by the means of RRAM devices. While this methodology is universal, with applications ranging from few-device-circuits to large macroblocks, we demonstrate it for a 2T2R-cell. The benefits of using RRAM devices are demonstrated by implementing a NAND standard cell merely consuming the area of two transistors. This cell is about 25 \% smaller than the equivalent CMOS NAND in the same technology. We use these cells to implement a half adder, beating the area of the equivalent CMOS implementation using more sophisticates gates by 15 \%. Lastly, we fully integrate this novel standard cell into a digital standard cell library and perform a synthesis and layout of a RISC-V CPU core.}, language = {en} } @misc{VinuesaGarciaDuenasetal., author = {Vinuesa, Guillermo and Garcia, Hector and Duenas, Salvador and Castan, Helena and I{\~n}iguez de la Torre, Ignacio and Gonzalez, Tomas and Dorai Swamy Reddy, Keerthi and Uhlmann, Max and Wenger, Christian and Perez, Eduardo}, title = {Effect of the temperature on the performance and dynamic behavior of HfO2-Based Rram Devices}, series = {ECS Meeting Abstracts}, volume = {MA2024-01}, journal = {ECS Meeting Abstracts}, number = {21}, publisher = {The Electrochemical Society}, issn = {2151-2043}, doi = {10.1149/MA2024-01211297mtgabs}, pages = {1297 -- 1297}, abstract = {Over the past decades, the demand for semiconductor memory devices has been steadily increasing, and is currently experiencing an unprecedented boost due to the development and expansion of artificial intelligence. Among emerging high-density non-volatile memories, resistive random-access memory (RRAM) is one of the best recourses for all kind of applications, such as neuromorphic computing or hardware security [1]. Although many materials have been evaluated for RRAM development, some of them with excellent results, HfO2 is one of the established materials in CMOS domain due to its compatibility with standard materials and processes [2]. The main goal of this work is to study the switching capability and stability of HfO2-based RRAMs, as well as to explore their ability in the field of analogue applications, by analyzing the evolution of the resistance states that allow multilevel control. Indeed, analogue operation is a key point for achieving electronic neural synapses in neuromorphic systems, with synaptic weight information encoded in the different resistance states. This research has been carried out over a wide temperature range, between 40 and 340 K, as we are interested in testing the extent to which performance is maintained or modified, with a view to designing neuromorphic circuits that are also suitable in the low-temperature realm. We aim to prove that these simple, fast, high integration density structures can also be used in circuits designed for specific applications, such as aerospace systems. The RRAM devices studied in this work are TiN/Ti/8 nm-HfO2/TiN metal-insulator-metal (MIM) capacitors. Dielectric layers were atomic layer deposited (ALD). It has been demonstrated that the Ti coat in the top electrode acts as a scavenger that absorbs oxygen atoms from the HfO2 layer, and facilitates the creation of conductive filaments of oxygen vacancies [3]. In fact, the oxygen reservoir capability of Ti is well known, as it is able to attract and release oxygen atoms from or to the HfO2 layer during the RRAM operation [4]. The clustering of vacancies extends through the entire thickness of the oxide and, after an electroformig step, it joins the upper and lower electrodes and the device reaches the low resistance state (LRS). By applying adequate electrical signals, the filaments can be partially dissolved, which brings the device into the high-resistance state (HRS), with lower current values. The set process brings the device to the LRS state, while the reset one brings it to the HRS. The dependence of electrical conductivity on external applied electrical excitation allows triggering the device between the both states in a non-volatile manner [5]. The experimental equipment used consisted of a Keithley 4200-SCS semiconductor parameter analyzer and a Lake Shore cryogenic probe station. Fig.1 shows current-voltage cycles measured at different temperatures; the averages values at each temperature, both in logarithmic and linear scale, are also shown. The functional window increases as temperature decreases. The evolutions of set and reset voltage values with temperature are depicted in Fig.2, whereas the current values (measured at 0.1 V) corresponding to the LRS and HRS can be seen in Fig.3. LRS resistance decreases as temperature increases, in agreement with semiconductor behaviour, probably due to a hopping conduction mechanism. Both set and reset voltages decrease as temperature increases; the reset process is smoother at high temperatures. The reduction in reset voltage variability as temperature increases is very notable. Finally, Fig. 4 shows a picture of the transient behaviour; in the right panel of the same figure, the amplitudes of the current transients in the reset state have been included in the external loop. To sum up, the resistive switching phenomena is studied in a wide temperature range. The LRS shows semiconducting behavior with temperature, most likely related to a hopping conduction mechanism. Switching voltages decrease as temperature increases, with a notable reduction in reset voltage variability. An excellent control of intermediate resistance state is shown through current transients at several voltages in the reset process. REFERENCES [1] M. Asif et al., Materials Today Electronics 1, 100004 (2022). [2] S. Slesazeck et al., Nanotechnology 30, 352003 (2019). [3] Z. Fang et al., IEEE Electron Device Letters 35, 9, 912-914 (2014). [4] H. Y. Lee et al., IEEE Electron Device Letters 31, 1, 44-46 (2010). [5] D. J. Wouters et al., Proceedings of the IEEE 103, 8, 1274-1288 (2015). Figure 1}, language = {en} } @misc{WenBaroniPerezetal., author = {Wen, Jianan and Baroni, Andrea and Perez, Eduardo and Uhlmann, Max and Fritscher, Markus and KrishneGowda, Karthik and Ulbricht, Markus and Wenger, Christian and Krstic, Milos}, title = {Towards reliable and energy-efficient RRAM based discrete fourier transform accelerator}, series = {2024 Design, Automation \& Test in Europe Conference \& Exhibition (DATE)}, journal = {2024 Design, Automation \& Test in Europe Conference \& Exhibition (DATE)}, publisher = {IEEE}, isbn = {978-3-9819263-8-5}, issn = {1558-1101}, doi = {10.23919/DATE58400.2024.10546709}, pages = {1 -- 6}, abstract = {The Discrete Fourier Transform (DFT) holds a prominent place in the field of signal processing. The development of DFT accelerators in edge devices requires high energy efficiency due to the limited battery capacity. In this context, emerging devices such as resistive RAM (RRAM) provide a promising solution. They enable the design of high-density crossbar arrays and facilitate massively parallel and in situ computations within memory. However, the reliability and performance of the RRAM-based systems are compromised by the device non-idealities, especially when executing DFT computations that demand high precision. In this paper, we propose a novel adaptive variability-aware crossbar mapping scheme to address the computational errors caused by the device variability. To quantitatively assess the impact of variability in a communication scenario, we implemented an end-to-end simulation framework integrating the modulation and demodulation schemes. When combining the presented mapping scheme with an optimized architecture to compute DFT and inverse DFT(IDFT), compared to the state-of-the-art architecture, our simulation results demonstrate energy and area savings of up to 57 \% and 18 \%, respectively. Meanwhile, the DFT matrix mapping error is reduced by 83\% compared to conventional mapping. In a case study involving 16-quadrature amplitude modulation (QAM), with the optimized architecture prioritizing energy efficiency, we observed a bit error rate (BER) reduction from 1.6e-2 to 7.3e-5. As for the conventional architecture, the BER is optimized from 2.9e-3 to zero.}, language = {en} } @misc{MaldonadoBaroniAldanaetal., author = {Maldonado, David and Baroni, Andrea and Aldana, Samuel and Dorai Swamy Reddy, Keerthi and Pechmann, Stefan and Wenger, Christian and Rold{\´a}n, Juan Bautista and P{\´e}rez, Eduardo}, title = {Kinetic Monte Carlo simulation analysis of the conductance drift in Multilevel HfO2-based RRAM devices}, series = {Nanoscale}, volume = {16}, journal = {Nanoscale}, number = {40}, publisher = {Royal Society of Chemistry (RSC)}, issn = {2040-3364}, doi = {10.1039/d4nr02975e}, pages = {19021 -- 19033}, abstract = {The drift characteristics of valence change memory (VCM) devices have been analyzed through both experimental analysis and 3D kinetic Monte Carlo (kMC) simulations.}, language = {en} } @misc{UhlmannRizziWenetal., author = {Uhlmann, Max and Rizzi, Tommaso and Wen, Jianan and P{\´e}rez-Bosch Quesada, Emilio and Al Beattie, Bakr and Ochs, Karlheinz and P{\´e}rez, Eduardo and Ostrovskyy, Philip and Carta, Corrado and Wenger, Christian and Kahmen, Gerhard}, title = {LUT-based RRAM model for neural accelerator circuit simulation}, series = {Proceedings of the 18th ACM International Symposium on Nanoscale Architectures}, journal = {Proceedings of the 18th ACM International Symposium on Nanoscale Architectures}, publisher = {ACM}, address = {New York, NY, USA}, doi = {10.1145/3611315.3633273}, pages = {1 -- 6}, abstract = {Neural hardware accelerators have been proven to be energy-efficient when used to solve tasks which can be mapped into an artificial neural network (ANN) structure. Resistive random-access memories (RRAMs) are currently under investigation together with several different memristive devices as promising technologies to build such accelerators combined together with complementary metal-oxide semiconductor (CMOS)-technologies in integrated circuits (ICs). While many research groups are actively developing sophisticated physical-based representations to better understand the underlying phenomena characterizing these devices, not much work has been dedicated to exploit the trade-off between simulation time and accuracy in the definition of low computational demanding models suitable to be used at many abstraction layers. Indeed, the design of complex mixed-signal systems as a neural hardware accelerators requires frequent interaction between the application- and the circuit-level that can be enabled only with the support of accurate and fast-simulating devices' models. In this work, we propose a solution to fill the aforementioned gap with a lookup table (LUT)-based Verilog-A model of IHP's 1-transistor-1-RRAM (1T1R) cell. In addition, the implementation challenges of conveying the communication between the abstract ANN simulation and the circuital analysis are tackled with a design flow for resistive neural hardware accelerators that features a custom Python wrapper. As a demonstration of the proposed design flow and 1T1R model, an ANN for the MNIST handwritten digit recognition task is assessed with the last layer verified in circuit simulation. The obtained recognition confidence intervals show a considerable discrepancy between the purely application-level PyTorch simulation and the proposed design flow which spans across the abstraction layers down to the circuital analysis.}, language = {en} } @misc{StrobelAlvaradoChavarinVoelkeletal., author = {Strobel, Carsten and Alvarado Chavarin, Carlos and V{\"o}lkel, Sandra and Jahn, Andreas and Hiess, Andre and Knaut, Martin and Albert, Matthias and Wenger, Christian and Steinke, Olaff and Stephan, Ulf and R{\"o}hlecke, S{\"o}ren and Mikolajick, Thomas}, title = {Enhanced Electrical Properties of Optimized Vertical Graphene-Base Hot Electron Transistors}, series = {ACS Applied Electronic Materials}, volume = {5}, journal = {ACS Applied Electronic Materials}, number = {3}, issn = {2637-6113}, doi = {10.1021/acsaelm.2c01725}, pages = {1670 -- 1675}, abstract = {The arrival of high-mobility two-dimensional materials like graphene leads to the renaissance of former vertical semiconductor-metal-semiconductor (SMS) hot electron transistors. Because of the monolayer thickness of graphene, improved SMS transistors with a semimetallic graphene-base electrode are now feasible for high-frequency applications. In this study we report about a device that consists of amorphous silicon, graphene, and crystalline silicon. For the first time, this device is fabricated by a four-mask lithography process which leads to significant improvements in the device performance. A strongly increased common-emitter current gain of 2\% could be achieved while the on-off ratio improved to 1.6 × 105, which is already higher than predicted theoretically. This could be mainly attributed to better interface characteristics and decreased lateral dimensions of the devices. A cutoff frequency of approximately 26 MHz could be forecasted based on the DC measurements of the device.}, language = {en} } @misc{KloesBischoffLeiseetal., author = {Kloes, Alexander and Bischoff, Carl and Leise, Jakob and Perez-Bosch Quesada, Emilio and Wenger, Christian and P{\´e}rez, Eduardo}, title = {Stochastic switching of memristors and consideration in circuit simulation}, series = {Solid State Electronics}, volume = {201}, journal = {Solid State Electronics}, issn = {0038-1101}, doi = {10.1016/j.sse.2023.108606}, abstract = {We explore the stochastic switching of oxide-based memristive devices by using the Stanford model for circuit simulation. From measurements, the device-to-device (D2D) and cycle-to-cycle (C2C) statistical variation is extracted. In the low-resistive state (LRS) dispersion by D2D variability is dominant. In the high-resistive state (HRS) C2C dispersion becomes the main source of fluctuation. A statistical procedure for the extraction of parameters of the compact model is presented. Thereby, in a circuit simulation the typical D2D and C2C fluctuations of the current-voltage (I-V) characteristics can be emulated by extracting statistical parameters of key model parameters. The statistical distributions of the parameters are used in a Monte Carlo simulation to reproduce the I-V D2D and C2C dispersions which show a good agreement to the measured curves. The results allow the simulation of the on/off current variation for the design of memory cells or can be used to emulate the synaptic behavior of these devices in artificial neural networks realized by a crossbar array of memristors.}, language = {en} } @misc{PerezBoschQuesadaMahadevaiahRizzietal., author = {Perez-Bosch Quesada, Emilio and Mahadevaiah, Mamathamba Kalishettyhalli and Rizzi, Tommaso and Wen, Jianan and Ulbricht, Markus and Krstic, Milos and Wenger, Christian and P{\´e}rez, Eduardo}, title = {Experimental Assessment of Multilevel RRAM-based Vector-Matrix Multiplication Operations for In-Memory Computing}, series = {IEEE Transactions on Electron Devices}, volume = {70}, journal = {IEEE Transactions on Electron Devices}, number = {4}, issn = {0018-9383}, doi = {10.1109/TED.2023.3244509}, pages = {2009 -- 2014}, abstract = {Resistive random access memory (RRAM)-based hardware accelerators are playing an important role in the implementation of in-memory computing (IMC) systems for artificial intelligence applications. The latter heavily rely on vector-matrix multiplication (VMM) operations that can be efficiently boosted by RRAM devices. However, the stochastic nature of the RRAM technology is still challenging real hardware implementations. To study the accuracy degradation of consecutive VMM operations, in this work we programed two RRAM subarrays composed of 8x8 one-transistor-one-resistor (1T1R) cells following two different distributions of conductive levels. We analyze their robustness against 1000 identical consecutive VMM operations and monitor the inherent devices' nonidealities along the test. We finally quantize the accuracy loss of the operations in the digital domain and consider the trade-offs between linearly distributing the resistive states of the RRAM cells and their robustness against nonidealities for future implementation of IMC hardware systems.}, language = {en} } @misc{AkhtarDabrowskiLukoseetal., author = {Akhtar, Fatima and Dabrowski, Jaroslaw and Lukose, Rasuole and Wenger, Christian and Lukosius, Mindaugas}, title = {Chemical Vapor Deposition Growth of Graphene on 200 mm Ge (110)/Si Wafers and Ab Initio Analysis of Differences in Growth Mechanisms on Ge (110) and Ge (001)}, series = {ACS Applied Materials \& Interfaces}, volume = {15}, journal = {ACS Applied Materials \& Interfaces}, number = {30}, issn = {1944-8244}, doi = {10.1021/acsami.3c05860}, pages = {36966 -- 36974}, abstract = {For the fabrication of modern graphene devices, uniform growth of high-quality monolayer graphene on wafer scale is important. This work reports on the growth of large-scale graphene on semiconducting 8 inch Ge(110)/Si wafers by chemical vapor deposition and a DFT analysis of the growth process. Good graphene quality is indicated by the small FWHM (32 cm-1) of the Raman 2D band, low intensity ratio of the Raman D and G bands (0.06), and homogeneous SEM images and is confirmed by Hall measurements: high mobility (2700 cm2/Vs) and low sheet resistance (800 Ω/sq). In contrast to Ge(001), Ge(110) does not undergo faceting during the growth. We argue that Ge(001) roughens as a result of vacancy accumulation at pinned steps, easy motion of bonded graphene edges across (107) facets, and low energy cost to expand Ge area by surface vicinals, but on Ge(110), these mechanisms do not work due to different surface geometries and complex reconstruction.}, language = {en} } @misc{RizziBaroniGlukhovetal., author = {Rizzi, Tommaso and Baroni, Andrea and Glukhov, Artem and Bertozzi, Davide and Wenger, Christian and Ielmini, Daniele and Zambelli, Cristian}, title = {Process-Voltage-Temperature Variations Assessment in Energy-Aware Resistive RAM-Based FPGAs}, series = {IEEE Transactions on Device and Materials Reliability}, volume = {23}, journal = {IEEE Transactions on Device and Materials Reliability}, number = {3}, issn = {1530-4388}, doi = {10.1109/TDMR.2023.3259015}, pages = {328 -- 336}, abstract = {Resistive Random Access Memory (RRAM) technology holds promises to improve the Field Programmable Gate Array (FPGA) performance, reduce the area footprint, and dramatically lower run-time energy requirements compared to the state-of-the-art CMOS-based products. However, the integration of RRAM in FPGAs is hindered by the high programming power consumption and by non-ideal behaviors of the device due to its stochastic nature that may overshadow the benefits in normal operation mode. To cope with these challenges, optimized programming strategies have to be investigated. In this work, we explore the impact that different procedures to set the device have on the run-time performance. Process, voltage, and temperature (PVT) variations as well as time-dependent drift effect of the RRAM device are considered in the assessment of 4T1R MUX designs characteristics. The comparison with tradition CMOS implementations reveals how the choice of the target resistive state and the programming algorithm are key design aspects to reduce the run-time delay and energy metrics, while at the same time improving the robustness against the different sources of variations.}, language = {en} } @misc{UhlmannPerezBoschQuesadaFritscheretal., author = {Uhlmann, Max and P{\´e}rez-Bosch Quesada, Emilio and Fritscher, Markus and P{\´e}rez, Eduardo and Schubert, Markus Andreas and Reichenbach, Marc and Ostrovskyy, Philip and Wenger, Christian and Kahmen, Gerhard}, title = {One-Transistor-Multiple-RRAM Cells for Energy-Efficient In-Memory Computing}, series = {21st IEEE Interregional NEWCAS Conference (NEWCAS)}, journal = {21st IEEE Interregional NEWCAS Conference (NEWCAS)}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, isbn = {979-8-3503-0024-6}, issn = {2474-9672}, doi = {10.1109/NEWCAS57931.2023.10198073}, pages = {5}, abstract = {The use of resistive random-access memory (RRAM) for in-memory computing (IMC) architectures has significantly improved the energy-efficiency of artificial neural networks (ANN) over the past years. Current RRAM-technologies are physically limited to a defined unambiguously distinguishable number of stable states and a maximum resistive value and are compatible with present complementary metal-oxide semiconductor (CMOS)-technologies. In this work, we improved the accuracy of current ANN models by using increased weight resolutions of memristive devices, combining two or more in-series RRAM cells, integrated in the back end of line (BEOL) of the CMOS process. Based on system level simulations, 1T2R devices were fabricated in IHP's 130nm SiGe:BiCMOS technology node, demonstrating an increased number of states. We achieved an increase in weight resolution from 3 bit in ITIR cells to 6.5 bit in our 1T2R cell. The experimental data of 1T2R devices gives indications for the performance and energy-efficiency improvement in ITNR arrays for ANN applications.}, language = {en} } @misc{StrobelAlvaradoChavarinWengeretal., author = {Strobel, Carsten and Alvarado Chavarin, Carlos and Wenger, Christian and Albert, Matthias and Mikolajick, Thomas}, title = {Vertical Graphene-Based Transistors for Power Electronics, Optoelectronics and Radio-Frequency Applications}, series = {IEEE Nanotechnology Materials and Devices Conference (NMDC), Paestum, Italy, 22-25 October 2023}, journal = {IEEE Nanotechnology Materials and Devices Conference (NMDC), Paestum, Italy, 22-25 October 2023}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, isbn = {979-8-3503-3546-0}, issn = {2473-0718}, doi = {10.1109/NMDC57951.2023.10344102}, pages = {196 -- 201}, abstract = {The combination of two-dimensional materials, such as graphene, with established thin films offers great opportunities for enabling next-generation vertical transistors for various applications. This paper gives a brief overview about different vertical transistor concepts using twodimensional materials proposed so far, e.g. the hot electron transistor and the Barristor. With the arrival of twodimensional materials, the hot electron transistor also experienced a revival with predicted cut-off frequencies in the THz range. The Barristor overcomes the weak current saturation of lateral graphene field-effect transistors and high on-off ratios up to 107 were demonstrated, which are suitable parameters for logic applications. By combining a semiconductor-graphene-semiconductor design of the simplest hot electron transistor with the Barristor operating principle a new device, called graphene adjustable-barriers transistor, can be realized. This new device concept provides the potential for RF, power electronics, and optoelectronic applications.}, language = {en} } @misc{MoralesMahmoodinezhadTschammeretal., author = {Morales, Carlos and Mahmoodinezhad, Ali and Tschammer, Rudi and Kosto, Yuliia and Alvarado Chavarin, Carlos and Schubert, Markus Andreas and Wenger, Christian and Henkel, Karsten and Flege, Jan Ingo}, title = {Combination of Multiple Operando and In-Situ Characterization Techniques in a Single Cluster System for Atomic Layer Deposition: Unraveling the Early Stages of Growth of Ultrathin Al2O3 Films on Metallic Ti Substrates}, series = {Inorganics}, volume = {11}, journal = {Inorganics}, number = {12}, issn = {2304-6740}, doi = {10.3390/inorganics11120477}, abstract = {This work presents a new ultra-high vacuum cluster tool to perform systematic studies of the early growth stages of atomic layer deposited (ALD) ultrathin films following a surface science approach. By combining operando (spectroscopic ellipsometry and quadrupole mass spectrometry) and in situ (X-ray photoelectron spectroscopy) characterization techniques, the cluster allows us to follow the evolution of substrate, film, and reaction intermediates as a function of the total number of ALD cycles, as well as perform a constant diagnosis and evaluation of the ALD process, detecting possible malfunctions that could affect the growth, reproducibility, and conclusions derived from data analysis. The homemade ALD reactor allows the use of multiple precursors and oxidants and its operation under pump and flow-type modes. To illustrate our experimental approach, we revisit the well-known thermal ALD growth of Al2O3 using trimethylaluminum and water. We deeply discuss the role of the metallic Ti thin film substrate at room temperature and 200 °C, highlighting the differences between the heterodeposition (<10 cycles) and the homodeposition (>10 cycles) growth regimes at both conditions. This surface science approach will benefit our understanding of the ALD process, paving the way toward more efficient and controllable manufacturing processes.}, language = {en} } @misc{CapistaLukoseMajnoonetal., author = {Capista, Daniele and Lukose, Rasuole and Majnoon, Farnaz and Lisker, Marco and Wenger, Christian and Lukosius, Mindaugas}, title = {Study on the metal -graphene contact resistance achieved with one -dimensional contact architecture}, series = {IEEE Nanotechnology Materials and Devices Conference (NMDC 2023), Paestum, Italy, 22-25 October 2023}, journal = {IEEE Nanotechnology Materials and Devices Conference (NMDC 2023), Paestum, Italy, 22-25 October 2023}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, isbn = {979-8-3503-3546-0}, doi = {10.1109/NMDC57951.2023.10343775}, pages = {118 -- 119}, abstract = {Graphene has always been considered as one of the materials with the greatest potential for the realization of improved microelectronic and photonic devices. But to actually reach its full potential in Si CMOS technology, graphene -based devices need to overcome different challenges. They do not only need to have better performances than standard devices, but they also need to be compatible with the production of standard Si based devices. To address the first challenge the main route requires the optimization of the contact resistance, that highly reduces the devices performance, while the second challenges requires the integration of graphene inside the standard production lines used for microelectronic. In this work we used an 8" wafer pilot -line to realize our devices and we studied the behavior of the contact resistance between metal and graphene obtained by one -dimensional contact architecture between the two materials. The contact resistance has been measured by means of Transmission Line Method (TLM) with several contact patterning.}, language = {en} } @misc{LukosiusLukoseLiskeretal., author = {Lukosius, Mindaugas and Lukose, Rasuolė and Lisker, Marco and Dubey, P. K. and Raju, A. I. and Capista, Daniele and Majnoon, Farnaz and Mai, A. and Wenger, Christian}, title = {Developments of Graphene devices in 200 mm CMOS pilot line}, series = {Proc. Nanotechnology Materials and Devices Conference (NMDC 2023),Paestum, Italy, 22-25 October 2023}, journal = {Proc. Nanotechnology Materials and Devices Conference (NMDC 2023),Paestum, Italy, 22-25 October 2023}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, isbn = {979-8-3503-3546-0}, doi = {10.1109/NMDC57951.2023.10343569}, pages = {505 -- 506}, abstract = {Due to the unique electronic band structure, graphene has opened great potential to extend the functionality of a large variety of devices. Despite the significant progress in the fabrication of various graphene based microelectronic devices, the integration of graphene devices still lack the stability and compatibility with Si-technology processes. Therefore, the investigation and preparation of graphene devices in conditions resembling as close as possible the Si technology environment is of highest importance. This study aims to explore various aspects of graphene research on a 200mm pilot line, with a focus on simulations and fabrication of graphene modulator. To be more precise, it includes design and fabrication of the layouts, necessary mask sets, creation of the flows, fabrication, and measurements of the Gr modulators on 200 mm wafers.}, language = {en} } @misc{MaldonadoCantudoPerezetal., author = {Maldonado, David and Cantudo, Antonio and P{\´e}rez, Eduardo and Romero-Zaliz, Rocio and Perez-Bosch Quesada, Emilio and Mahadevaiah, Mamathamba Kalishettyhalli and Jimenez-Molinos, Francisco and Wenger, Christian and Roldan, Juan Bautista}, title = {TiN/Ti/HfO2/TiN Memristive Devices for Neuromorphic Computing: From Synaptic Plasticity to Stochastic Resonance}, series = {Frontiers in Neuroscience}, volume = {17}, journal = {Frontiers in Neuroscience}, issn = {1662-4548}, doi = {10.3389/fnins.2023.1271956}, abstract = {We characterize TiN/Ti/HfO2/TiN memristive devices for neuromorphic computing. We analyze different features that allow the devices to mimic biological synapses and present the models to reproduce analytically some of the data measured. In particular, we have measured the spike timing dependent plasticity behavior in our devices and later on we have modeled it. The spike timing dependent plasticity model was implemented as the learning rule of a spiking neural network that was trained to recognize the MNIST dataset. Variability is implemented and its influence on the network recognition accuracy is considered accounting for the number of neurons in the network and the number of training epochs. Finally, stochastic resonance is studied as another synaptic feature.It is shown that this effect is important and greatly depends on the noise statistical characteristics.}, language = {en} } @misc{PerezBoschQuesadaRizziGuptaetal., author = {Perez-Bosch Quesada, Emilio and Rizzi, Tommaso and Gupta, Aditya and Mahadevaiah, Mamathamba Kalishettyhalli and Schubert, Andreas and Pechmann, Stefan and Jia, Ruolan and Uhlmann, Max and Hagelauer, Amelie and Wenger, Christian and P{\´e}rez, Eduardo}, title = {Multi-Level Programming on Radiation-Hard 1T1R Memristive Devices for In-Memory Computing}, series = {14th Spanish Conference on Electron Devices (CDE 2023), Valencia, Spain, 06-08 June 2023}, journal = {14th Spanish Conference on Electron Devices (CDE 2023), Valencia, Spain, 06-08 June 2023}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, isbn = {979-8-3503-0240-0}, doi = {10.1109/CDE58627.2023.10339525}, pages = {4}, abstract = {This work presents a quasi-static electrical characterization of 1-transistor-1-resistor memristive structures designed following hardness-by-design techniques integrated in the CMOS fabrication process to assure multi-level capabilities in harsh radiation environments. Modulating the gate voltage of the enclosed layout transistor connected in series with the memristive device, it was possible to achieve excellent switching capabilities from a single high resistance state to a total of eight different low resistance states (more than 3 bits). Thus, the fabricated devices are suitable for their integration in larger in-memory computing systems and in multi-level memory applications. Index Terms—radiation-hard, hardness-by-design, memristive devices, Enclosed Layout Transistor, in-memory computing}, language = {en} } @misc{PerezMaldonadoMahadevaiahetal., author = {P{\´e}rez, Eduardo and Maldonado, David and Mahadevaiah, Mamathamba Kalishettyhalli and Perez-Bosch Quesada, Emilio and Cantudo, Antonio and Jimenez-Molinos, Francisco and Wenger, Christian and Roldan, Juan Bautista}, title = {A comparison of resistive switching parameters for memristive devices with HfO2 monolayers and Al2O3/HfO2 bilayers at the wafer scale}, series = {14th Spanish Conference on Electron Devices (CDE 2023), Valencia, Spain, 06-08 June 2023}, journal = {14th Spanish Conference on Electron Devices (CDE 2023), Valencia, Spain, 06-08 June 2023}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, isbn = {979-8-3503-0240-0}, doi = {10.1109/CDE58627.2023.10339417}, pages = {5}, abstract = {Memristive devices integrated in 200 mm wafers manufactured in 130 nm CMOS technology with two different dielectrics, namely, a HfO2 monolayer and an Al2O3/HfO2 bilayer, have been measured. The cycle-to-cycle (C2C) and device-todevice (D2D) variability have been analyzed at the wafer scale using different numerical methods to extract the set (Vset) and reset (Vreset) voltages. Some interesting differences between both technologies were found in terms of switching characteristics}, language = {en} } @misc{ReiserReichenbachRizzietal., author = {Reiser, Daniel and Reichenbach, Marc and Rizzi, Tommaso and Baroni, Andrea and Fritscher, Markus and Wenger, Christian and Zambelli, Cristian and Bertozzi, Davide}, title = {Technology-Aware Drift Resilience Analysis of RRAM Crossbar Array Configurations}, series = {21st IEEE Interregional NEWCAS Conference (NEWCAS), 26-28 June 2023, Edinburgh, United Kingdom}, journal = {21st IEEE Interregional NEWCAS Conference (NEWCAS), 26-28 June 2023, Edinburgh, United Kingdom}, publisher = {IEEE}, address = {Piscataway, NJ}, isbn = {979-8-3503-0024-6}, doi = {10.1109/NEWCAS57931.2023}, abstract = {In-memory computing with resistive-switching random access memory (RRAM) crossbar arrays has the potential to overcome the major bottlenecks faced by digital hardware for data-heavy workloads such as deep learning. However, RRAM devices are subject to several non-idealities that result in significant inference accuracy drops compared with software baseline accuracy. A critical one is related to the drift of the conductance states appearing immediately at the end of program and verify algorithms that are mandatory for accurate multi-level conductance operation. The support of drift models in state-of-the-art simulation tools of memristive computationin-memory is currently only in the early stage, since they overlook key device- and array-level parameters affecting drift resilience such as the programming algorithm of RRAM cells, the choice of target conductance states and the weight-toconductance mapping scheme. The goal of this paper is to fully expose these parameters to RRAM crossbar designers as a multi-dimensional optimization space of drift resilience. For this purpose, a simulation framework is developed, which comes with the suitable abstractions to propagate the effects of those RRAM crossbar configuration parameters to their ultimate implications over inference performance stability.}, language = {en} } @misc{FranckDabrowskiSchubertetal., author = {Franck, Max and Dabrowski, Jarek and Schubert, Markus Andreas and Vignaud, Dominique and Achehboune, Mohamed and Colomer, Jean-Fran{\c{c}}ois and Henrard, Luc and Wenger, Christian and Lukosius, Mindaugas}, title = {Investigating Impacts of Local Pressure and Temperature on CVD Growth of Hexagonal Boron Nitride on Ge(001)/Si}, series = {Advanced Materials Interfaces}, volume = {12}, journal = {Advanced Materials Interfaces}, number = {1}, publisher = {Wiley}, issn = {2196-7350}, doi = {10.1002/admi.202400467}, pages = {9}, abstract = {AbstractThe chemical vapor deposition (CVD) growth of hexagonal boron nitride (hBN) on Ge substrates is a promising pathway to high-quality hBN thin films without metal contaminations for microelectronic applications, but the effect of CVD process parameters on the hBN properties is not well understood yet. The influence of local changes in pressure and temperature due to different reactor configurations on the structure and quality of hBN films grown on Ge(001)/Si is studied. Injection of the borazine precursor close to the sample surface results in an inhomogeneous film thickness, attributed to an inhomogeneous pressure distribution at the surface, as shown by computational fluid dynamics simulations. The additional formation of nanocrystalline islands is attributed to unfavorable gas phase reactions due to the radiative heating of the injector. Both issues are mitigated by increasing the injector-sample distance, leading to an 86\% reduction in pressure variability on the sample surface and a 200 °C reduction in precursor temperature. The resulting hBN films exhibit no nanocrystalline islands, improved thickness homogeneity, and high crystalline quality (Raman FWHM = 23 cm-1). This is competitive with hBN films grown on other non-metal substrates but achieved at lower temperature and with a low thickness of only a few nanometers.}, language = {en} } @misc{WenVargasZhuetal., author = {Wen, Jianan and Vargas, Fabian Luis and Zhu, Fukun and Reiser, Daniel and Baroni, Andrea and Fritscher, Markus and Perez, Eduardo and Reichenbach, Marc and Wenger, Christian and Krstic, Milos}, title = {RRAMulator : an efficient FPGA-based emulator for RRAM crossbar with device variability and energy consumption evaluation}, series = {Microelectronics Reliability}, volume = {168}, journal = {Microelectronics Reliability}, publisher = {Elsevier BV}, address = {Amsterdam}, issn = {0026-2714}, doi = {10.1016/j.microrel.2025.115630}, pages = {1 -- 10}, abstract = {The in-memory computing (IMC) systems based on emerging technologies have gained significant attention due to their potential to enhance performance and energy efficiency by minimizing data movement between memory and processing unit, which is especially beneficial for data-intensive applications. Designing and evaluating systems utilizing emerging memory technologies, such as resistive RAM (RRAM), poses considerable challenges due to the limited support from electronics design automation (EDA) tools for rapid development and design space exploration. Additionally, incorporating technology-dependent variability into system-level simulations is critical to accurately assess the impact on system reliability and performance. To bridge this gap, we propose RRAMulator, a field-programmable gate array (FPGA) based hardware emulator for RRAM crossbar array. To avoid the complex device models capturing the nonlinear current-voltage (IV) relationships that degrade emulation speed and increase hardware utilization, we propose a device and variability modeling approach based on device measurements. We deploy look-up tables (LUTs) for device modeling and use the multivariate kernel density estimation (KDE) method to augment existing data, extending data variety and avoiding repetitive data usage. The proposed emulator achieves cycle-accurate, real-time emulations and provides information such as latency and energy consumption for matrix mapping and vector-matrix multiplications (VMMs). Experimental results show a significant reduction in emulation time compared to conventional behavioral simulations. Additionally, an RRAM-based discrete Fourier transform (DFT) accelerator is analyzed as a case study featuring a range of in-depth system assessments.}, language = {en} } @misc{SpetzlerFritscherParketal., author = {Spetzler, Benjamin and Fritscher, Markus and Park, Seongae and Kim, Nayoun and Wenger, Christian and Ziegler, Martin}, title = {AI-driven model for optimized pulse programming of memristive devices}, series = {APL Machine Learning}, volume = {3}, journal = {APL Machine Learning}, number = {2}, publisher = {AIP Publishing}, issn = {2770-9019}, doi = {10.1063/5.0251113}, pages = {1 -- 7}, abstract = {Next-generation artificial intelligence (AI) hardware based on memristive devices offers a promising approach to reducing the increasingly large energy consumption of AI applications. However, programming memristive AI hardware to achieve a desired synaptic weight configuration remains challenging because it requires accurate and energy-efficient algorithms for selecting the optimal weight-update pulses. Here, we present a computationally efficient AI model for predicting the weight update of memristive devices and guiding device programming. The synaptic weight-update behavior of bilayer HfO2/TiO2 memristive devices is characterized over a range of pulse parameters to provide experimental data for the AI model. Three different artificial neural network (ANN) configurations are trained and evaluated regarding the amount of training data required for accurate predictions and the computational costs. Finally, we apply the model to an antipulse weight-update process to demonstrate its performance. The results show that accurate and computationally inexpensive predictions are possible with comparatively few datasets and small ANNs. The normalized weight-update processes are predicted with accuracies comparable with larger model architectures but require only 896 floating point operations and 8.33 nJ per inference. This makes the model a promising candidate for integration into AI-driven device controllers as a precise and energy-efficient solution for memristive device programming.}, language = {en} } @misc{FritscherUhlmannOstrovskyyetal., author = {Fritscher, Markus and Uhlmann, Max and Ostrovskyy, Philip and Reiser, Daniel and Chen, Junchao and Wen, Jianan and Schulze, Carsten and Kahmen, Gerhard and Fey, Dietmar and Reichenbach, Marc and Krstic, Milos and Wenger, Christian}, title = {RISC-V CPU design using RRAM-CMOS standard cells}, series = {IEEE transactions on very large scale integration (VLSI) systems}, journal = {IEEE transactions on very large scale integration (VLSI) systems}, editor = {Wenger, Christian}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, address = {New York}, issn = {1063-8210}, doi = {10.1109/TVLSI.2025.3554476}, pages = {1 -- 9}, abstract = {The breakdown of Dennard scaling has been the driver for many innovations such as multicore CPUs and has fueled the research into novel devices such as resistive random access memory (RRAM). These devices might be a means to extend the scalability of integrated circuits since they allow for fast and nonvolatile operation. Unfortunately, large analog circuits need to be designed and integrated in order to benefit from these cells, hindering the implementation of large systems. This work elaborates on a novel solution, namely, creating digital standard cells utilizing RRAM devices. Albeit this approach can be used both for small gates and large macroblocks, we illustrate it for a 2T2R-cell. Since RRAM devices can be vertically stacked with transistors, this enables us to construct a nand standard cell, which merely consumes the area of two transistors. This leads to a 25\% area reduction compared to an equivalent CMOS nand gate. We illustrate achievable area savings with a half-adder circuit and integrate this novel cell into a digital standard cell library. A synthesized RISC-V core using RRAM-based cells results in a 10.7\% smaller area than the equivalent design using standard CMOS gates.}, language = {en} } @misc{StrobelChavarinKnautetal., author = {Strobel, Carsten and Chavarin, Carlos A. and Knaut, Martin and Wenger, Christian and Heinzig, Andr{\´e} and Mikolajick, Thomas}, title = {Demonstration of a graphene adjustable-barriers phototransistor with tunable ultra-high responsivity}, series = {Advanced Optical Materials}, journal = {Advanced Optical Materials}, publisher = {Wiley-VCH GmbH}, address = {Weinheim}, issn = {2195-1071}, doi = {10.1002/adom.202500344}, pages = {1 -- 9}, abstract = {The development of high-speed dual-band photodetectors with high responsivity is important for several applications such as optical communication, biomedical imaging or spectroscopy. In this work, a phototransistor with ultra-high responsivity is demonstrated, which potentially also allows for very high bandwidths. The device is called graphene adjustable-barriers phototransistor and is potentially capable for dual-band detection in the visible-infrared (VIS-IR) range. A material combination of intrinsic hydrogenated amorphous silicon, graphene, and n-type germanium (n-Ge) is used for the demonstrator. The device operation is based on the light induced modulation of the graphene Fermi energy level and Schottky barrier heights. For the first time, the functional mechanism of the device is successfully demonstrated in the VIS range with responsivities exceeding 107 A/W at a gate voltage of 20V. The bandwidth of the device is 1.2 kHz and is so far limited by the defective gate material hydrogenated amorphous silicon and relaxed feature sizes of the demonstrator. These results are an important step toward a new generation of high-responsivity high-speed photo detection devices.}, language = {en} } @misc{MoralesGertigKotetal., author = {Morales, Carlos and Gertig, Max and Kot, Małgorzata and Alvarado, Carlos and Schubert, Markus Andreas and Zoellner, Marvin Hartwig and Wenger, Christian and Henkel, Karsten and Flege, Jan Ingo}, title = {In situ X-ray photoelectron spectroscopy study of atomic layer deposited cerium oxide on SiO₂ : substrate influence on the reaction mechanism during the early stages of growth}, series = {Advanced materials interfaces}, volume = {12}, journal = {Advanced materials interfaces}, number = {5}, publisher = {Wiley}, address = {Weinheim}, issn = {2196-7350}, doi = {10.1002/admi.202400537}, pages = {1 -- 13}, abstract = {Thermal atomic layer deposition (ALD) of cerium oxide using commercial Ce(thd)4 precursor and O3 on SiO2 substrates is studied employing in-situ X-ray photoelectron spectroscopy (XPS). The system presents a complex growth behavior determined by the change in the reaction mechanism when the precursor interacts with the substrate or the cerium oxide surface. During the first growth stage, non-ALD side reactions promoted by the substrate affect the growth per cycle, the amount of carbon residue on the surface, and the oxidation degree of cerium oxide. On the contrary, the second growth stage is characterized by a constant growth per cycle in good agreement with the literature, low carbon residues, and almost fully oxidized cerium oxide films. This distinction between two growth regimes is not unique to the CeOx/SiO2 system but can be generalized to other metal oxide substrates. Furthermore, the film growth deviates from the ideal layer-by-layer mode, forming micrometric inhomogeneous and defective flakes that eventually coalesce for deposit thicknesses above 10 nm. The ALD-cerium oxide films present less order and a higher density of defects than films grown by physical vapor deposition techniques, likely affecting their reactivity in oxidizing and reducing conditions.}, language = {en} } @misc{MaldonadoAcalOrtizetal., author = {Maldonado, D. and Acal, C. and Ortiz, H. and Aguilera, A.M. and Ruiz-Castro, J.E. and Cantudo, A. and Baroni, A. and Dorai Swamy Reddy, K. and Pechmann, S. and Uhlmann, M. and Wenger, Christian and P{\´e}rez, E. and Rold{\´a}n, J.B.}, title = {A comprehensive statistical study of the post-programming conductance drift in HfO2-based memristive devices}, series = {Materials science in semiconductor processing}, volume = {196}, journal = {Materials science in semiconductor processing}, publisher = {Elsevier BV}, address = {Amsterdam}, issn = {1369-8001}, doi = {10.1016/j.mssp.2025.109668}, pages = {1 -- 8}, abstract = {The conductance drift in HfO2-based memristors is a critical reliability concern that impacts in their application in non-volatile memory and neuromorphic computing integrated circuits. In this work we present a comprehensive statistical analysis of the conductance drift behavior in resistive random access memories (RRAM) whose physics is based on valence change mechanisms. We experimentally characterize the conductance time evolution in six different resistance states and analyze the suitability of various probability distributions to model the observed variability. Our results reveal that the log-logistic probability distribution provides the best fit to the experimental data for the resistance multilevels and the measured post-programming times under consideration. Additionally, we employ an analysis of variance (ANOVA) to statistically analyze the post-programming time and current level effects on the observed variability. Finally, in the context of the Stanford compact model, we describe how variability has to be implemented to obtain the probability distribution of measured current values.}, language = {en} } @misc{SchlipfCutoloManganellietal., author = {Schlipf, Jon and Cutolo, Maria Alessandra and Manganelli, Costanza Lucia and Reiter, Sebastian and Seibold, G{\"o}tz and Skibitzki, Oliver and Wenger, Christian and Fischer, Inga Anita}, title = {Fabrication and optical characterization of CMOS-compatible honeycomb-like large-scale lattices of near-field coupled plasmonic TiN nanotriangles}, series = {Advanced optical materials}, volume = {2025}, journal = {Advanced optical materials}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2195-1071}, doi = {10.1002/adom.202403408}, pages = {1 -- 8}, abstract = {Honeycomb-like plasmonic titanium nitride nanotriangle arrays defined by photolithography and fabricated in a modified silicon-germanium electronic-photonic integrated circuit process in a state-of-the-art pilot line. The nanotriangle arrays are characterized in experiments and simulations. The momentum-dependent reflectance spectra exhibit not only features that are consistent with surface lattice resonances in the honeycomb lattice but also minima governed by near-field coupling of the individual nanotriangles. The optical characterization results in combination with simulation-based predictions indicate that such nanotriangle arrays are capable of supporting collective plasmonic resonances that can be described as massless Dirac particles. The fabrication approach opens up the possibility of integrating the structures into device fabrication processes, and avenues toward near-infrared sensing and communication applications are predicted.}, language = {en} } @misc{RajuDubeyLukoseetal., author = {Raju, Ashraful Islam and Dubey, Pawan Kumar and Lukose, Rasuole and Wenger, Christian and Mai, Andreas and Lukosius, Mindaugas}, title = {Optimized silicon nitride-spaced graphene electro-optic modulator with high efficiency and bandwidth}, series = {Optical and quantum electronics}, volume = {57}, journal = {Optical and quantum electronics}, number = {7}, publisher = {Springer Science and Business Media LLC}, address = {Dordrecht}, issn = {1572-817X}, doi = {10.1007/s11082-025-08310-0}, pages = {1 -- 15}, abstract = {Optical modulators with high modulation efficiency, large operational bandwidth, high-speed and low energy consumption is essential for the advancement of on-chip optical signal processing. To overcome the bandwidth-efficiency trade-off in graphene optical modulators, a buried silicon nitride waveguide-coupled double-layer graphene electro-absorption (EA) optical modulator has been proposed. In the proposed design, silicon nitride layer is also embedded between the two graphene layers as a dielectric spacer to enhance the graphene-light interaction. An extensive simulation has been performed to optimize the dielectric spacing layers between the two graphene for optimal device performance including the waveguide dimensions and optical modes profile. The simulated results show a high modulation efficiency of 1.1 dB/V and a modulation depth of 0.16 dB/µm, corresponding to a 15-dB extinction ratio for a 100 µm device at 1550 nm, with a 30 nm spacer and 12 V driving voltage. The proposed modulator achieves a 14 GHz bandwidth and operates over a 1050 nm broadband operation spectral range. The concurrent presence of high modulation bandwidth and efficiency renders these modulator designs highly viable for on-chip optical communication applications.}, language = {en} } @misc{MoralesTschammerPożarowskaetal., author = {Morales, Carlos and Tschammer, Rudi and Pożarowska, Emilia and Kosto, Julia and Villar-Garcia, Ignacio J. and P{\´e}rez-Dieste, Virginia and Favaro, Marco and Starr, David E. and Kapuścik, Paulina and Mazur, Michał and Wojcieszak, Damian and Domaradzki, Jarosław and Alvarado, Carlos and Wenger, Christian and Henkel, Karsten and Flege, Jan Ingo}, title = {Hydrogen sensing via heterolytic H₂ activation at room temperature by atomic layer deposited ceria}, series = {ChemSusChem : chemistry, sustainability, energy, materials}, volume = {18}, journal = {ChemSusChem : chemistry, sustainability, energy, materials}, number = {13}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1864-5631}, doi = {10.1002/cssc.202402342}, pages = {1 -- 13}, abstract = {Ultrathin atomic layer deposited ceria films (\<20 nm) are capable of H2 heterolytic activation at room temperature, undergoing a significant reduction regardless of the absolute pressure, as measured under in-situ conditions by near ambient pressure X-ray photoelectron spectroscopy. ALD-ceria can gradually reduce as a function of H2 concentration under H2/O2 environments, especially for diluted mixtures below 10 \%. At room temperature, this reduction is limited to the surface region, where the hydroxylation of the ceria surface induces a charge transfer towards the ceria matrix, reducing Ce4+ cations to Ce3+. Thus, ALD-ceria replicates the expected sensing mechanism of metal oxides at low temperatures without using any noble metal decorating the oxide surface to enhance H2 dissociation. The intrinsic defects of the ALD deposit seem to play a crucial role since the post-annealing process capable of healing these defects leads to decreased film reactivity. The sensing behavior was successfully demonstrated in sensor test structures by resistance changes towards low concentrations of H2 at low operating temperatures without using noble metals. These promising results call for combining ALD-ceria with more conductive metal oxides, taking advantage of the charge transfer at the interface and thus modifying the depletion layer formed at the heterojunction.}, language = {en} } @misc{FuenningPaulManganellietal., author = {F{\"u}nning, Tabea and Paul, Martin and Manganelli, Costanza Lucia and Wenger, Christian and Mai, Andreas and Steglich, Patrick}, title = {Comparative simulation analysis of photonic ultrasound sensors based on silicon waveguides}, series = {Scientific reports}, volume = {15}, journal = {Scientific reports}, number = {1}, publisher = {Springer Science and Business Media LLC}, address = {[London]}, issn = {2045-2322}, doi = {10.1038/s41598-025-01953-9}, pages = {1 -- 13}, abstract = {Pressure sensors based on photonic integrated circuits (PIC) offer the prospect of outstanding sensitivities, extreme miniaturization and have the potential for highly scalable production using CMOS compatible processing. PIC-based pressure sensors detect the change in optical properties, i.e. the intensity or phase of the optical carrier wave inside miniaturized waveguide structures. The detection of ultrasound is achieved by engineering the waveguide architecture such that a pressure causes a high change in the effective refractive index of the waveguide. A range of PIC-based pressure sensors have been reported, but a comparison of the sensitivity of the different approaches is not straightforward, since different pressure sensitive waveguide architectures as well as photonic layouts and measurement setups impact the performance. Additionally, the used sensitivity unit is not uniform throughout the different studies, further complicating a comparison. In this work, a detailed simulation study is carried out by finite element modeling of different pressure sensitive waveguide architectures for a consistent comparison. We analyze three different sensor architectures: (A) a free standing membrane located within a tiny air gap above the waveguide, (B) a waveguide located on top of a deflectable membrane as well as (C) a waveguide embedded inside a pressure-sensitive polymer cladding. The mechanical response of the structures and the resulting changes in mode propagation, i.e. the change of the effective refractive index, are analyzed. The waveguide sensitivities in RIU/MPa for different waveguide types (strip, slot) and polarization states (TE, TM) are compared. The results reveal inherent limitations of the different waveguide designs and create a basis for the selection of suitable designs for further ultrasound sensor development. Possibilities for enhancing waveguide sensitivity are identified and discussed. Additionally, we have shown that the studied approaches are extensible to SiN waveguides.}, language = {en} } @misc{UhlmannKrysikWenetal., author = {Uhlmann, Max and Krysik, Milosz and Wen, Jianan and Frohberg, Max and Baroni, Andrea and Reddy, Keerthi Dorai Swamy and P{\´e}rez, Eduardo and Ostrovskyy, Philip and Piotrowski, Krzysztof and Carta, Corrado and Wenger, Christian and Kahmen, Gerhard}, title = {A compact one-transistor-multiple-RRAM characterization platform}, series = {IEEE transactions on circuits and systems I : regular papers}, journal = {IEEE transactions on circuits and systems I : regular papers}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, address = {New York}, issn = {1549-8328}, doi = {10.1109/TCSI.2025.3555234}, pages = {1 -- 12}, abstract = {Emerging non-volatile memories (eNVMs) such as resistive random-access memory (RRAM) offer an alternative solution compared to standard CMOS technologies for implementation of in-memory computing (IMC) units used in artificial neural network (ANN) applications. Existing measurement equipment for device characterisation and programming of such eNVMs are usually bulky and expensive. In this work, we present a compact size characterization platform for RRAM devices, including a custom programming unit IC that occupies less than 1 mm2 of silicon area. Our platform is capable of testing one-transistor-one-RRAM (1T1R) as well as one-transistor-multiple-RRAM (1TNR) cells. Thus, to the best knowledge of the authors, this is the first demonstration of an integrated programming interface for 1TNR cells. The 1T2R IMC cells were fabricated in the IHP's 130 nm BiCMOS technology and, in combination with other parts of the platform, are able to provide more synaptic weight resolution for ANN model applications while simultaneously decreasing the energy consumption by 50 \%. The platform can generate programming voltage pulses with a 3.3 mV accuracy. Using the incremental step pulse with verify algorithm (ISPVA) we achieve 5 non-overlapping resistive states per 1T1R device. Based on those 1T1R base states we measure 15 resulting state combinations in the 1T2R cells.}, language = {en} } @misc{BaroniPerezReddyetal., author = {Baroni, Andrea and P{\´e}rez, Eduardo and Reddy, Keerthi Dorai Swamy and Pechmann, Stefan and Wenger, Christian and Ielmini, Daniele and Zambelli, Cristian}, title = {Enhancing RRAM reliability : exploring the effects of Al doping on HfO2-based devices}, series = {IEEE transactions on device and materials reliability}, journal = {IEEE transactions on device and materials reliability}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, address = {New York}, issn = {1530-4388}, doi = {10.1109/TDMR.2025.3581061}, pages = {1 -- 9}, abstract = {This study provides a comprehensive evaluation of RRAM devices based on HfO2 and Al-doped HfO2 insulators, focusing on critical performance metrics, including Forming yield, Post-Programming Stability (PPS), Fast Drift, Endurance, and Retention at elevated temperatures (125 ∘C). Aluminum doping significantly enhances device reliability and stability, improving Forming yield, reducing current drift during programming and Retention tests, and minimizing variability during Endurance cycling. While Al5\%:HfO2 achieves most of the observed benefits compared to pure HfO2, Al7\%:HfO2 offers incremental advantages for scenarios requiring extreme reliability. These findings position Al-doped HfO2 devices as a promising solution for RRAM-based systems in memory and neuromorphic computing, highlighting the potential trade-off between performance gains and increased fabrication complexity. This work underlines the importance of material engineering for optimizing RRAM devices in application-specific contexts.}, language = {en} } @misc{UhlmannRizziWenetal., author = {Uhlmann, Max and Rizzi, Tommaso and Wen, Jianan and Quesada, Emilio P{\´e}rez-Bosch and Beattie, Bakr Al and Ochs, Karlheinz and P{\´e}rez, Eduardo and Ostrovskyy, Philip and Carta, Corrado and Wenger, Christian and Kahmen, Gerhard}, title = {End-to-end design flow for resistive neural accelerators}, series = {IEEE transactions on computer-aided design of integrated circuits and systems}, journal = {IEEE transactions on computer-aided design of integrated circuits and systems}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, address = {New York}, issn = {0278-0070}, doi = {10.1109/TCAD.2025.3597237}, pages = {1 -- 5}, abstract = {Neural hardware accelerators have demonstrated notable energy efficiency in tackling tasks, which can be adapted to artificial neural network (ANN) structures. Research is currently directed towards leveraging resistive random-access memories (RRAMs) among various memristive devices. In conjunction with complementary metal-oxide semiconductor (CMOS) technologies within integrated circuits (ICs), RRAM devices are used to build such neural accelerators. In this study, we present a neural accelerator hardware design and verification flow, which uses a lookup table (LUT)-based Verilog-A model of IHP's one-transistor-one-RRAM (1T1R) cell. In particular, we address the challenges of interfacing between abstract ANN simulations and circuit analysis by including a tailored Python wrapper into the design process for resistive neural hardware accelerators. To demonstrate our concept, the efficacy of the proposed design flow, we evaluate an ANN for the MNIST handwritten digit recognition task, as well as for the CIFAR-10 image recognition task, with the last layer verified through circuit simulation. Additionally, we implement different versions of a 1T1R model, based on quasi-static measurement data, providing insights on the effect of conductance level spacing and device-to-device variability. The circuit simulations tackle both schematic and physical layout assessment. The resulting recognition accuracies exhibit significant differences between the purely application-level PyTorch simulation and our proposed design flow, highlighting the relevance of circuit-level validation for the design of neural hardware accelerators.}, language = {en} } @misc{BlumensteinPerezWengeretal., author = {Blumenstein, Alan and P{\´e}rez, Eduardo and Wenger, Christian and Dersch, Nadine and Kloes, Alexander and I{\~n}{\´i}guez, Benjam{\´i}n and Schwarz, Mike}, title = {Evaluating device variability in RRAM-based single- and multi-layer perceptrons}, series = {2025 32nd International Conference on Mixed Design of Integrated Circuits and System (MIXDES)}, journal = {2025 32nd International Conference on Mixed Design of Integrated Circuits and System (MIXDES)}, publisher = {IEEE}, address = {New York}, isbn = {978-83-63578-27-5}, doi = {10.23919/MIXDES66264.2025.11092102}, pages = {74 -- 77}, abstract = {This work investigates the impact of stochastic weight variations in hardware implementations of artificial neural networks, focusing on a Single-Layer Perceptron and Multi-Layer Perceptrons. A variable neural network model is introduced, applying Gaussian variability to synaptic weights based on an adjustment rate, which controls the proportion of affected weights. By studying how stochastic variations affect accuracy, simulations under device-to-device and cycle-to-cycle variation conditions demonstrate that Single-Layer Perceptrons are more sensitive to weight variations, while Multi-Layer perceptrons show greater robustness. Additionally, stochastic quantization improves the performance of Multi-Layer Perceptrons but has minimal effect on Single-Layer Perceptrons.}, language = {en} } @misc{DubeyRajuLukoseetal., author = {Dubey, Pawan Kumar and Raju, Ashraful Islam and Lukose, Rasuole and Wenger, Christian and Lukosius, Mindaugas}, title = {Optimizing graphene ring modulators : a comparative study of straight, bent, and racetrack geometries}, series = {Nanomaterials}, volume = {15}, journal = {Nanomaterials}, number = {15}, publisher = {MDPI AG}, address = {Basel}, issn = {2079-4991}, doi = {10.3390/nano15151158}, pages = {1 -- 17}, abstract = {Graphene-based micro-ring modulators are promising candidates for next-generation optical interconnects, offering compact footprints, broadband operation, and CMOS compatibility. However, most demonstrations to date have relied on conventional straight bus coupling geometries, which limit design flexibility and require extremely small coupling gaps to reach critical coupling. This work presents a comprehensive comparative analysis of straight, bent, and racetrack bus geometries in graphene-on-silicon nitride (Si₃N₄) micro-ring modulators operating near 1.31 µm. Based on finite-difference time-domain simulation results, a proposed racetrack-based modulator structure demonstrates that extending the coupling region enables critical coupling at larger gaps—up to 300 nm—while preserving high modulation efficiency. With only 6-12\% graphene coverage, this geometry achieves extinction ratios of up to 28 dB and supports electrical bandwidths approaching 90 GHz. Findings from this work highlight a new co-design framework for coupling geometry and graphene coverage, offering a pathway to high-speed and high-modulation-depth graphene photonic modulators suitable for scalable integration in next-generation photonic interconnects devices.}, language = {en} } @misc{KalraAlvaradoChavarinNitschetal., author = {Kalra, Amanpreet and Alvarado Chavarin, Carlos and Nitsch, Paul-Gregor and Tschammer, Rudi and Flege, Jan Ingo and Ratzke, Markus and Zoellner, Marvin Hartwig and Schubert, Markus Andreas and Wenger, Christian and Fischer, Inga Anita}, title = {Deposition of CeOₓ/SnOₓ-based thin films via RF magnetron sputtering for resistive gas sensing applications}, series = {Physica B, Condensed matter}, volume = {723}, journal = {Physica B, Condensed matter}, publisher = {Elsevier BV}, address = {Amsterdam}, issn = {0921-4526}, doi = {10.1016/j.physb.2025.418098}, pages = {1 -- 7}, abstract = {Cerium oxide-tin oxide (CeOx/SnOx) thin films with varying Sn content were deposited using RF magnetron sputtering and investigated for hydrogen sensing applications. Structural, compositional, and morphological properties were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX). Gas sensing measurements showed effective hydrogen detection at room temperature, with the sensitivity strongly influenced by Sn content and oxygen vacancy concentration. Higher Sn concentration enhanced the sensing response, which was correlated with microstructural features obtained from AFM and EDX, as well as with the presence of Ce3+ and Ce4+ oxidation states identified by XPS. This study highlights the potential of CeOx/SnOx thin films for possible back-end-of-line integration and provides proof-of-principle for room-temperature hydrogen sensing.}, language = {en} } @misc{WenBaroniUhlmannetal., author = {Wen, Jianan and Baroni, Andrea and Uhlmann, Max and Perez, Eduardo and Wenger, Christian and Krstic, Milos}, title = {ReFFT : an energy-efficient RRAM-based FFT accelerator}, series = {IEEE transactions on computer-aided design of integrated circuits and systems}, journal = {IEEE transactions on computer-aided design of integrated circuits and systems}, publisher = {IEEE}, address = {Piscataway, NJ}, issn = {0278-0070}, doi = {10.1109/TCAD.2025.3627146}, pages = {1 -- 14}, abstract = {The fast Fourier transform (FFT) is a highly efficient algorithm for computing the discrete Fourier transform (DFT). It is widely employed in various applications, including digital communication, image processing, and signal analysis. Recently, in-memory computing architectures based on emerging technologies, such as resistive RAM (RRAM), have demonstrated promising performance with low hardware cost for data-intensive applications. However, directly mapping FFT onto RRAM crossbars is challenging because the algorithm relies on many small, sequential butterfly operations, while cross-bars are optimized for large-scale, highly parallel vector-matrix multiplications (VMMs). In this paper, we introduce ReFFT, a system architecture that reformulates FFT computations for efficient execution on RRAM crossbars. ReFFT combines the reduced computational complexity of FFT with the parallel VMM capability of RRAM. We incorporate measured device data into our framework to analyze the effect of variability and develop an adaptive mapping scheme that improves twiddle-factor programming accuracy, leading to a 9.9 dB peak signal-to-noise ratio (PSNR) improvement for a 256-point FFT. Compared with prior RRAM-based DFT designs, ReFFT achieves up to 4.6× and 19.5× higher energy efficiency for 256- and 2048-point FFTs, respectively. The system is further validated in digital communication and satellite image compression tasks.}, language = {en} } @misc{DerschPerezWengeretal., author = {Dersch, Nadine and Perez, Eduardo and Wenger, Christian and Lanza, Mario and Zhu, Kaichen and Schwarz, Mike and I{\~n}{\´i}guez, Benjam{\´i}n and Kloes, Alexander}, title = {Statistical model for the calculation of conductance variations of memristive devices}, series = {2025 IEEE European Solid-State Electronics Research Conference (ESSERC)}, journal = {2025 IEEE European Solid-State Electronics Research Conference (ESSERC)}, publisher = {IEEE}, address = {Piscataway, NJ}, doi = {10.1109/ESSERC66193.2025.11213973}, pages = {373 -- 376}, abstract = {This paper presents a statistical model which calculates the expected conductance variations from device to device or from cycle to cycle of memristive devices. The mean readout current and its standard deviation can be calculated for binary and multi-level devices. These values are important for simulating hardware-based artificial neural networks at circuit level and testing their functionality. Research into hardwarebased artificial neural networks is important because they are energy-efficient. Furthermore to calculating the variations, the statistical model can be used to determine what influence the cumulative distribution function of switching has on the variations and which behavior provides the best results for the hardwarebased artificial neural network. Some memristive devices exhibit multi-level behavior due to defects in the switching layer. The number of these defects and the optimal amount can be estimated.}, language = {en} } @misc{DerschPerezWengeretal., author = {Dersch, Nadine and Perez, Eduardo and Wenger, Christian and Schwarz, Mike and Iniguez, Benjamin and Kloes, Alexander}, title = {A closed-form model for programming of oxide-based resistive random access memory cells derived from the Stanford model}, series = {Solid-state electronics}, volume = {230}, journal = {Solid-state electronics}, publisher = {Elsevier BV}, address = {Amsterdam}, issn = {0038-1101}, doi = {10.1016/j.sse.2025.109238}, pages = {1 -- 5}, abstract = {This paper presents a closed-form model for pulse-based programming of oxide-based resistive random access memory devices. The Stanford model is used as a basis and solved in a closed-form for the programming cycle. A constant temperature is set for this solution. With the closed-form model, the state of the device after programming or the required programming settings for achieving a specific device conductance can be calculated directly and quickly. The Stanford model requires time-consuming iterative calculations for high accuracy in transient analysis, which is not necessary for the closed-form model. The closed-form model is scalable across different programming pulse widths and voltages.}, language = {en} } @misc{WenBaroniMistronietal., author = {Wen, Jianan and Baroni, Andrea and Mistroni, Alberto and Perez, Eduardo and Zambelli, Cristian and Wenger, Christian and Krstic, Milos and Bolzani P{\"o}hls, Leticia Maria}, title = {ReDiM : an efficient strategy for read disturb mitigation in RRAM-based accelerators}, series = {2025 IEEE 31st International Symposium on On-Line Testing and Robust System Design (IOLTS)}, journal = {2025 IEEE 31st International Symposium on On-Line Testing and Robust System Design (IOLTS)}, publisher = {IEEE}, address = {Piscataway, NJ}, isbn = {979-8-3315-3334-2}, doi = {10.1109/IOLTS65288.2025.11117065}, pages = {1 -- 7}, abstract = {Resistive RAM (RRAM) has emerged as a promising non-volatile memory technology for implementing energy-efficient hardware accelerators within the in-memory computing (IMC) paradigm. However, due to the immature fabrication process and inherent material instabilities, frequent read operations during computations can induce read disturb effects, leading to unintended resistance drift and potential data corruption. Existing mitigation approaches primarily focus on detecting read disturb effects and triggering memory refresh operations. In this work, we propose an architecture-level solution that mitigates read disturb in RRAM-based accelerators. Our strategy employs crossbar duplication and decomposes the single high input pulse into two lower-amplitude pulses, effectively minimizing the risk of read disturb. To validate our approach, we develop a simulation framework that incorporates measurement data from characterized RRAM devices under read disturb stress conditions. Experimental results on VGG-8 with CIFAR-10 demonstrate that the proposed method significantly mitigates inference accuracy degradation caused by read disturb in RRAM-based accelerators, while incurring modest area and energy overheads of 12.32\% and 2.15\%, respectively. This work provides a practical and scalable solution for enhancing the robustness of RRAM-based accelerators in edge and high-performance computing applications.}, language = {en} } @misc{AftowiczFritscherLehnigeretal., author = {Aftowicz, Marcin and Fritscher, Markus and Lehniger, Kai and Wenger, Christian and Langend{\"o}rfer, Peter and Brzozowski, Marcin}, title = {Hardware-friendly Nystr{\"o}m approximation for water treatment anomaly detection}, series = {IECON 2024 - 50th Annual Conference of the IEEE Industrial Electronics Society : proceedings}, journal = {IECON 2024 - 50th Annual Conference of the IEEE Industrial Electronics Society : proceedings}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, address = {Piscataway, NJ}, isbn = {978-1-6654-6454-3}, doi = {10.1109/IECON55916.2024.10905880}, pages = {1 -- 7}, abstract = {This paper presents an approach to accelerate One-Class Support Vector Machines (SVM) using a hardware-friendly kernel that doesn't rely on multiplication operations, thus adaptable to hardware platforms. Leveraging Nystr{\"o}m approximation, we implemented a pipeline and compared its performance against a software implementation using libsvm. Furthermore, we evaluated the efficiency of our approach by deploying it on an FPGA. Our experiments, conducted on the SWaT dataset, demonstrate a 50x speedup using the FPGA implementation, achieving a classification time of 21 microseconds per instance. Importantly, we find no degradation in performance, as measured by the f-score of the attack class in the test set. This study explores the potential of hardware acceleration in optimizing anomaly detection systems for real-time applications.}, language = {en} }