@misc{FellahHezilTouhamietal., author = {Fellah, Mamoun and Hezil, Naouel and Touhami, Mohamed Zine and Hussien, Mohammed A. and Montagne, Alex and Mejias, Alberto and Iost, Alain and Kossman, Stephania and Chekalkin, Timofey and Obrosov, Aleksei and Weiß, Sabine}, title = {Effect of Sintering Temperature on Mechanical and Tribological Behavior of Ti-Ni Alloy for Biomedical Applications}, series = {TMS 2020 149th Annual Meeting \& Exhibition Supplemental Proceedings}, journal = {TMS 2020 149th Annual Meeting \& Exhibition Supplemental Proceedings}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-36295-9}, issn = {2367-1181}, doi = {10.1007/978-3-030-36296-6_157}, pages = {1701 -- 1710}, abstract = {Ti-Ni powder compacts were prepared by mechanical alloying (MA), followed by hot isostatic pressing (HIP). Afterwards, the samples were sintered at different temperatures (950, 1050, 1150 and 1250 °C). Microhardness, density, crystallite size as well as microstrain of the sintered samples were measured and analyzed. Wear characteristics in phosphate-buffered saline (PBS) solution was tested under different applied loads of 2 N, 10 N, and 20 N, respectively. The results indicated that the crystallite size continuously decreases with increasing sintering temperature and reaches the lowest value of 31.3 nm at 1250 °C. The relative density of the sample sintered at 1250 °C is 98.0\%. Moreover, the higher sintering temperatures lead to the higher relative density and the increase in hardness and young's modulus of the sample. At the same time the friction coefficient and wear rate were lower for the samples sintered at 1250 °C. This improvement in friction and wear resistance is attributed to the grain size refinement. Ti-Ni sintered at 1250 °C showed good tribological performance under all test conditions.}, language = {en} } @misc{HezilAissaniFellahetal., author = {Hezil, Naouel and Aissani, Linda and Fellah, Mamoun and Samad, Mohammed Abdul and Obrosov, Aleksei and Chekalkin, Timofey and Marchenko, Ekaterina}, title = {Structural, and tribological properties of nanostructured α + β type titanium alloys for total hip}, series = {Journal of Materials Research and Technology}, journal = {Journal of Materials Research and Technology}, number = {19}, issn = {2238-7854}, doi = {10.1016/j.jmrt.2022.06.042}, pages = {3568 -- 3578}, abstract = {Titanium alloys are in demand for various biomedical applications and the most popular among them being, Ti-6Al-4V. Hence, in this study, Ti-6Al-7Nb are fabricated through the route of mechanical milling using different sintering temperatures. X-ray diffraction and hardness tests were conducted to characterize the developed sams to evaluate the effect of sintering temperatures on the structural and mechanical properties. It is observed that the sams sintered at a temperature of 1250 °C had the smallest crystallite and pore size, with enhanced relative density and mechanical properties. Tribological tests were conducted at varying normal loads to characterize the wear and frictional behaviour and showed that the sams sintered at 1250 °C presented the lowest friction coefficient and wear rate.}, language = {en} } @incollection{FellahHezilAbderrahimetal., author = {Fellah, Mamoun and Hezil, Naouel and Abderrahim, Karima and Samad, Mohammed Abdul and Montagne, Alex and Mejias, Alberto and Iost, Alain and Kossman, Stephania and Chekalkin, Timofey and Obrosov, Aleksei and Weiß, Sabine}, title = {Investigating the Effect of Sintering Temperature on Structural and Tribological Properties of a Nanostructured Ti-20Nb-13Zr Alloy for Biomedical Applications}, series = {Characterization of Minerals, Metals, and Materials}, booktitle = {Characterization of Minerals, Metals, and Materials}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-36628-5}, issn = {2367-1181}, doi = {10.1007/978-3-030-36628-5_61}, pages = {619 -- 629}, abstract = {β-type Ti-20Nb-13Zr alloys with low Young's modulus were prepared at different sintering temperatures (950, 1050, 1150, and 1250 °C). The morphological and structural characteristics of as-prepared samples were investigated by several methods. Wear tests were conducted using a ball-on-plate type oscillating tribometer under different applied loads (2, 10, and 20 N). The morphological characterization indicated that the mean pore and crystallite size continuously decreased with increasing sintering temperature to reach lowest values of 40 nm and 38 nm at 1250 °C, respectively. The relative density of the 1250 °C sintered sample was as high as 98.7\%. Moreover, the higher sintering temperature resulted in higher relative density and closed porosity of the sample. Both the friction coefficient and wear rate were lower in the sample sintered at 1250 °C as compared to other samples. This enhancement in tribological properties was attributed to a closed porosity.}, language = {en} }