@misc{MaussNakovWenzeletal., author = {Mauß, Fabian and Nakov, Galin and Wenzel, Paul and Steiner, R{\"u}diger and Kr{\"u}ger, Christian and Zhang, Yongzeh and Rawat, Rajesh and Borg, Andreas and Perlman, Cathleen and Fr{\"o}jd, Karin and Lehtiniemi, Harry}, title = {Soot Simulation under Diesel Engine Conditions Using a Flamelet Approach}, series = {SAE International Journal of Engines}, volume = {2}, journal = {SAE International Journal of Engines}, number = {2}, issn = {1946-3936}, pages = {89 -- 104}, language = {en} } @misc{NetzerSeidelPasternaketal., author = {Netzer, Corinna and Seidel, Lars and Pasternak, Michal and Lehtiniemi, Harry and Perlman, Cathleen and Ravet, Fr{\´e}d{\´e}ric and Mauß, Fabian}, title = {Three-dimensional computational fluid dynamics engine knock prediction and evaluation based on detailed chemistry and detonation theory}, series = {International Journal of Engine Research}, volume = {19}, journal = {International Journal of Engine Research}, number = {1}, issn = {1468-0874}, doi = {10.1177/1468087417740271}, pages = {33 -- 44}, abstract = {Engine knock is an important phenomenon that needs consideration in the development of gasoline-fueled engines. In our days, this development is supported using numerical simulation tools to further understand and predict in-cylinder processes. In this work, a model tool chain which uses a detailed chemical reaction scheme is proposed to predict the auto-ignition behavior of fuels with different octane ratings and to evaluate the transition from harmless auto-ignitive deflagration to knocking combustion. In our method, the auto-ignition characteristics and the emissions are calculated using a gasoline surrogate reaction scheme containing pathways for oxidation of ethanol, toluene, n-heptane, iso-octane and their mixtures. The combustion is predicted using a combination of the G-equation based flame propagation model utilizing tabulated laminar flame speeds and well-stirred reactors in the burned and …}, language = {en} } @misc{WeberLiLovasetal., author = {Weber, Kathrin and Li, T. and L{\o}v{\aa}s, Terese and Perlman, Cathleen and Seidel, Lars and Mauß, Fabian}, title = {Stochastic reactor modeling of biomass pyrolysis and gasification}, series = {Journal of analytical and applied pyrolysis}, volume = {124}, journal = {Journal of analytical and applied pyrolysis}, issn = {0165-2370}, doi = {10.1016/j.jaap.2017.01.003}, pages = {592 -- 601}, abstract = {Abstract In this paper, a partially stirred stochastic reactor model is presented as an alternative for the modeling of biomass pyrolysis and gasification. Instead of solving transport equations in all spatial dimensions as in CFD simulations, the description of state variables and mixing processes is based on a probability density function, making this approach computationally efficient. The virtual stochastic particles, an ensemble of flow elements consisting of porous solid biomass particles and surrounding gas, mimic the turbulent exchange of heat and mass in practical systems without the computationally expensive resolution of spatial dimensions. Each stochastic particle includes solid phase, pore gas and bulk gas interaction. The reactor model is coupled with a chemical mechanism for both surface and gas phase reactions. A Monte Carlo algorithm with operator splitting …}, language = {en} } @misc{NetzerSeidelPasternaketal., author = {Netzer, Corinna and Seidel, Lars and Pasternak, Michal and Klauer, Christian and Perlman, Cathleen and Ravet, Fr{\´e}d{\´e}ric and Mauß, Fabian}, title = {Engine Knock Prediction and Evaluation Based on Detonation Theory Using a Quasi-Dimensional Stochastic Reactor Mode}, series = {SAE technical paper}, journal = {SAE technical paper}, number = {2017-01-0538}, issn = {0096-5170}, doi = {10.4271/2017-01-0538}, pages = {11 Seiten}, language = {en} } @misc{MatriscianoFrankenPerlmanetal., author = {Matrisciano, Andrea and Franken, Tim and Perlman, Cathleen and Borg, Anders and Lehtiniemi, Harry and Mauß, Fabian}, title = {Development of a Computationally Efficient Progress Variable Approach for a Direct Injection Stochastic Reactor Model}, series = {SAE technical papers}, journal = {SAE technical papers}, number = {2017-01-0512}, issn = {0148-7191}, doi = {10.4271/2017-01-0512}, pages = {18 Seiten}, language = {en} } @misc{AslanjanKlauerPerlmanetal., author = {Aslanjan, Jana and Klauer, Christian and Perlman, Cathleen and G{\"u}nther, Vivien and Mauß, Fabian}, title = {Simulation of a Three-Way Catalyst Using Transient Single and Multi-Channel Models}, series = {SAE technical paper}, journal = {SAE technical paper}, number = {2017-01-0966}, issn = {0148-7191}, doi = {10.4271/2017-01-0966}, pages = {11 Seiten}, language = {en} } @inproceedings{NetzerSeidelPasternaketal., author = {Netzer, Corinna and Seidel, Lars and Pasternak, Michal and Mauß, Fabian and Lehtiniemi, Harry and Perlman, Cathleen and Ravet, Fr{\´e}d{\´e}ric}, title = {3D CFD Engine Knock Predication and Evaluation Based on Detailed Chemistry and Detonation Theory}, series = {Motorische Verbrennung : aktuelle Probleme und moderne L{\"o}sungsans{\"a}tze, XIII. Tagung im Haus der Technik Ludwigsburg, 16.-17. M{\"a}rz 2017}, booktitle = {Motorische Verbrennung : aktuelle Probleme und moderne L{\"o}sungsans{\"a}tze, XIII. Tagung im Haus der Technik Ludwigsburg, 16.-17. M{\"a}rz 2017}, editor = {Leipertz, Alfred and Fr{\"o}ba, Andreas Paul}, publisher = {ESYTEC Energie- und Systemtechnik GmbH}, address = {Erlangen}, isbn = {978-3-945806-08-1}, language = {en} } @inproceedings{NetzerSeidelPasternaketal., author = {Netzer, Corinna and Seidel, Lars and Pasternak, Michal and Klauer, Christian and Perlman, Cathleen and Ravet, Fr{\´e}d{\´e}ric and Mauß, Fabian}, title = {Impact of Gasoline Octane Rating on Engine Knock using Detailed Chemistry and a Quasi-dimensional Stochastic Reaktior Model}, series = {Digital Proceedings of the 8th European Combustion Meeting (ECM 2017), Dubrovnik, Croatia}, booktitle = {Digital Proceedings of the 8th European Combustion Meeting (ECM 2017), Dubrovnik, Croatia}, pages = {493 -- 498}, language = {en} } @misc{SvenssonLiShamunetal., author = {Svensson, Erik and Li, Changle and Shamun, Sam and Johansson, Bengt and Tuner, Martin and Perlman, Cathleen and Lehtiniemi, Harry and Mauß, Fabian}, title = {Potential Levels of Soot, NOx , HC and CO for Methanol Combustion}, series = {SAE Technical Papers}, journal = {SAE Technical Papers}, number = {2016-01-0887}, issn = {0148-7191}, doi = {10.4271/2016-01-0887}, pages = {17 Seiten}, abstract = {Methanol is today considered a viable green fuel for combustion engines because of its low soot emissions and the possibility of it being produced in a CO2-neutral manner. Methanol as a fuel for combustion engines have attracted interest throughout history and much research was conducted during the oil crisis in the seventies. In the beginning of the eighties the oil prices began to decrease and interest in methanol declined. This paper presents the emission potential of methanol. T-Φ maps were constructed using a 0-D reactor with constant pressure, temperature and equivalence ratio to show the emission characteristics of methanol. These maps were compared with equivalent maps for diesel fuel. The maps were then complemented with engine simulations using a stochastic reactor model (SRM), which predicts end-gas emissions. The SRM was validated using experimental results from a truck engine running in Partially Premixed Combustion (PPC) mode at medium loads. The SRM was able to predict the combustion in terms of pressure trace and rate of heat release. The CO and NOx emissions were matched, however, the HC emissions were underestimated. Finally, the trajectories from the SRM simulations were superimposed on the T-Φ maps to investigate the in engine conditions. The T-Φ map analysis shows that emission of soot are non-existent, formaldehyde can be avoided and that emissions of methane are kept at, compared to diesel combustion, low levels, however CO and NOx levels are similar to diesel combustion. These results were confirmed for engine conditions by the SRM simulations and the engine experiments.}, language = {en} } @inproceedings{MatriscianoBorgPerlmanetal., author = {Matrisciano, Andrea and Borg, Anders and Perlman, Cathleen and Pasternak, Michal and Seidel, Lars and Netzer, Corinna and Mauß, Fabian and Lehtiniemi, Harry}, title = {Simulation of DI-Diesel combustion using tabulated chemistry approach}, series = {1st Conference on Combustion Processes in Marine and Automotive Engines, 7th - 8th June 2016, Lund, Schweden}, booktitle = {1st Conference on Combustion Processes in Marine and Automotive Engines, 7th - 8th June 2016, Lund, Schweden}, pages = {44 -- 47}, language = {en} } @misc{MatriscianoBorgPerlmanetal., author = {Matrisciano, Andrea and Borg, Anders and Perlman, Cathleen and Lehtiniemi, Harry and Pasternak, Michal and Mauß, Fabian}, title = {Soot Source Term Tabulation Strategy for Diesel Engine Simulations with SRM}, series = {SAE Technical Papers}, journal = {SAE Technical Papers}, number = {2015-24-2400}, issn = {0148-7191}, doi = {10.4271/2015-24-2400}, pages = {1 -- 15}, abstract = {In this work a soot source term tabulation strategy for soot predictions under Diesel engine conditions within the zero-dimensional Direct Injection Stochastic Reactor Model (DI-SRM) framework is presented. The DI-SRM accounts for detailed chemistry, in-homogeneities in the combustion chamber and turbulence-chemistry interactions. The existing implementation [1] was extended with a framework facilitating the use of tabulated soot source terms. The implementation allows now for using soot source terms provided by an online chemistry calculation, and for the use of a pre-calculated flamelet soot source term library. Diesel engine calculations were performed using the same detailed kinetic soot model in both configurations. The chemical mechanism for n-heptane used in this work is taken from Zeuch et al. [2] and consists of 121 species and 973 reactions including PAH and thermal NO chemistry. The engine case presented in [1] is used also for this work. The case is a single-injection part-load passenger car Diesel engine with 27 \% EGR fueled with regular Diesel fuel. The two different approaches are analyzed and a detailed comparison is presented for the different soot processes globally and in the mixture fraction space. The contribution of the work presented in this paper is that a method which allows for a direct comparison of soot source terms - calculated online or retrieved from a flamelet table - without any change in the simulation setup has been developed within the SRM framework. It is a unique tool for model development. Our analysis supports our previous conclusion [1] that flamelet soot source terms libraries can be used for multi-dimensional modeling of soot formation in Diesel engines.}, language = {en} } @inproceedings{SeidelPerlmanFroejdetal., author = {Seidel, Lars and Perlman, Cathleen and Fr{\"o}jd, Karin and Klaus, Anna-Katharina and Laska, Timothy and Jalving, J. and Mauß, Fabian}, title = {CPU Efficient Modelling of Biomass Gasification Using a Stochastic Reactor Approach and Chemistry Guided Reduction}, series = {22nd European Biomass Conference and Exhibition}, booktitle = {22nd European Biomass Conference and Exhibition}, editor = {Seidel, Lars}, language = {en} } @misc{SeidelPerlmanFroejdetal., author = {Seidel, Lars and Perlman, Cathleen and Fr{\"o}jd, Karin and Klaus, Anna-Katharina and Laska, Timothy and Jalving, T. and Mauß, Fabian}, title = {CPU Efficient Modelling of Biomass Gasification Using a Stochastic Reactor Approach and Chemistry Guided Reduction}, pages = {1}, language = {en} }