@misc{BussFaltaFlege, author = {Buß, Lars and Falta, Jens and Flege, Jan Ingo}, title = {Intercalation dynamics of sulfur underneath graphene on Ru(0001)}, series = {Verhandlungen der DPG}, journal = {Verhandlungen der DPG}, publisher = {Deutsche Physikalische Gesellschaft}, address = {Bad Honnef}, issn = {0420-0195}, pages = {315 -- 315}, abstract = {It is known that the binding of epitaxially grown graphene to the substrate has a detrimental effect on its electronic properties. This is especially true for the strong binding to various transition metals and particularly ruthenium. However, via intercalation the interlayer coupling can be lifted and its unique electronic properties can be restored. Therefore, we have investigated the interaction of sulfur with single-layer graphene grown on Ru(0001) via surface segregation and CVD of ethylene under UHV conditions with in situ low-energy electron microscopy (LEEM) and micro-diffraction (µLEED). At elevated temperature and under dimethyl disulfide background pressure, we observe that sulfur intercalates through the open edges of the graphene islands. Prolonged exposure to sulfur induces wrinkling of the graphene islands, consistent with substantial relief of tensile strain after successful sulfur insertion underneath the graphene. It can be seen that the intercalation dynamics are both dependent on the temperature during intercalation and the preparation method of the graphene sheets. Furthermore, darkfield imaging and µLEED of the intercalated graphene reveal a graphene induced improved ordering of sulfur underneath.}, language = {en} } @misc{MishraFortiFabbrietal., author = {Mishra, Neeraj and Forti, Stiven and Fabbri, Filippo and Martini, Leonardo and McAleese, Clifford and Conran, Ben R. and Whelan, Patrick R. and Shivayogimath, Abhay and Jessen, Bjarke S. and Buß, Lars and Falta, Jens and Aliaj, Ilirjan and Roddaro, Stefano and Flege, Jan Ingo and B{\o}ggild, Peter and Teo, Kenneth B. K. and Coletti, Camilla}, title = {Wafer-Scale Synthesis of Graphene on Sapphire: Toward Fab-Compatible Graphene}, series = {Small}, volume = {15}, journal = {Small}, number = {50}, issn = {1613-6810}, doi = {10.1002/smll.201904906}, pages = {8}, abstract = {The adoption of graphene in electronics, optoelectronics, and photonics is hindered by the difficulty in obtaining high-quality material on technologically relevant substrates, over wafer-scale sizes, and with metal contamination levels compatible with industrial requirements. To date, the direct growth of graphene on insulating substrates has proved to be challenging, usually requiring metal-catalysts or yielding defective graphene. In this work, a metal-free approach implemented in commercially available reactors to obtain high-quality monolayer graphene on c-plane sapphire substrates via chemical vapor deposition is demonstrated. Low energy electron diffraction, low energy electron microscopy, and scanning tunneling microscopy measurements identify the Al-rich reconstruction of sapphire to be crucial for obtaining epitaxial graphene. Raman spectroscopy and electrical transport measurements reveal high-quality graphene with mobilities consistently above 2000 cm2 V-1 s-1. The process is scaled up to 4 and 6 in. wafers sizes and metal contamination levels are retrieved to be within the limits for back-end-of-line integration. The growth process introduced here establishes a method for the synthesis of wafer-scale graphene films on a technologically viable basis.}, language = {en} } @misc{SanchezBarquillaTschammerBussetal., author = {Sanchez-Barquilla, Raquel and Tschammer, Rudi and Buß, Lars and Morales, Carlos and Flege, Jan Ingo}, title = {The relation between substrate, Sm alloy, and surface sensitivity of ceria (111)- and (100)-oriented nano-islands on Ru(0001) and Cu(111)}, series = {Verhandlungen der DPG}, journal = {Verhandlungen der DPG}, publisher = {Deutsche Physikalische Gesellschaft}, address = {Bad Honnef}, issn = {0420-0195}, abstract = {Inverse oxide/metal catalysis allows achieving better catalytic performance than its traditional counterpart. For example, in cerium-based inverse catalyst systems, the Ce3+ states have been shown to be the active sites for methanol synthesis. This suggests that the activity can be enhanced by promoting those through alloying with trivalent, catalytically active rare-earth metals, as, e.g. Sm. We present low-energy and X-ray photoemission electron microscopy (LEEM/XPEEM), investigations that show how epitaxially grown (100)- and (111)-oriented CeO2 islands may be modified and/or alloyed by post-deposited metallic Sm. For the Ce1-xSmxO2-δ/Ru(0001) system, the CeO2 (111)-oriented islands undergo a structural change, concomitant with a partial conversion from Ce4+ to Ce3+. Surprisingly, for Ce1-xSmxO2-δ/Cu(111) the result is found to be face-dependent since only (100)-oriented CeOx islands were reduced whereas the (111)-oriented islands remained unaltered. Both systems have been exposed to reducing (H2) and oxidizing (CO2) conditions, resulting in higher reduction and in a complete recovery of the Ce4+ states, respectively. These unexpected results indicate a complex interaction not only between cerium and the doping element, but also an intricate interplay with the metallic substrate.}, language = {en} }