@article{KuehhornBeirow, author = {K{\"u}hhorn, Arnold and Beirow, Bernd}, title = {Schwingungsreduzierung an der Antriebseinheit eines Ultraleichtflugzeuges}, series = {Forum der Forschung}, volume = {6}, journal = {Forum der Forschung}, edition = {14}, issn = {0947-6989}, pages = {105 -- 108}, abstract = {Auf Grund der im Rahmen eines Testfluges subjektiv durch den Piloten festgestellten hohen Schwingungsamplituden wird das dynamische Verhalten eines Ultraleichtflugzeugmotors inklusive der Motoraufh{\"a}ngung untersucht. Hierin wir der numerische Teil der Untersuchun-gen durch eine finite Elemente Simulation abgedeckt, in deren Rahmen die wesentlichen Ei-genschwingformen der Antriebseinheit samt Motortr{\"a}ger identifiziert wurden. Erg{\"a}nzend mit den Ergebnissen einer experimentellen Modalanalyse und Betriebsschwingungsmessungen konnten wesentliche Informationen gewonnen werden, aus denen als Maßnahme zur Schwin-gungsreduzierung die Erh{\"o}hung der Schwungradmasse abgeleitet wurde.}, language = {de} } @inproceedings{ChmielewskiGorskiBeirowetal., author = {Chmielewski, Tadeusz and Gorski, Piotr and Beirow, Bernd and Kretzschmar, Joachim}, title = {Comparison of Theoretical and Experimental Free Vibrations of High Industrial Chimney Interacting with Soil}, series = {Teoria konstrukcji, konstrukcje metalowe, konstrukcje betonowe, XLVIII Konferencja Naukowa Komitetu Inżynierii Lądowej i Wodnej PAN i Komitetu Nauki PZITB Krynica 2002, Opole-Krynica 15-20 września 2002 r.}, booktitle = {Teoria konstrukcji, konstrukcje metalowe, konstrukcje betonowe, XLVIII Konferencja Naukowa Komitetu Inżynierii Lądowej i Wodnej PAN i Komitetu Nauki PZITB Krynica 2002, Opole-Krynica 15-20 września 2002 r.}, publisher = {Dolnośląskie Wydaw. Edukacyjne}, address = {Wrocław}, isbn = {83-7125-091-6}, pages = {27 -- 34}, abstract = {Theoretical frequencies and mode shapes of the high multi-flue industrial chimney, which is located in the power station of Opole, interacting with soil have been evaluated through the application of the finite element method. The aim of the present paper is to study the free vibrations of this chimney applying dynamic testing in full scale to confirm a calculation model and to obtain important information on the effect of soil interacting with the chimney.}, language = {en} } @inproceedings{BeirowKuehhorn, author = {Beirow, Bernd and K{\"u}hhorn, Arnold}, title = {Schwingungsreduzierung an der Antriebseinheit eines Ultraleichtflugzeuges : Beitrag Deutscher Luft- und Raumfahrtkongress Stuttgart 2002}, abstract = {Initiiert durch die im Rahmen eines Testfluges subjektiv durch den Piloten festgestellten hohen Schwingungsamplituden wird das dynamische Verhalten eines Ultraleichtflugzeugmotors inklusive der Motoraufh{\"a}ngung untersucht. Hierin wir der numerische Teil der Untersuchungen durch eine finite Elemente Simulation abgedeckt, in deren Rahmen die wesentlichen Eigenschwingformen der Antriebseinheit samt Motortr{\"a}ger identifiziert wurden. Erg{\"a}nzend mit den Ergebnissen einer experimentellen Modalanalyse und Betriebsschwingungsmessungen konnten wesentliche Informationen gewonnen werden, aus denen als Maßnahme zur Schwin-gungsreduzierung die Erh{\"o}hung der Schwungradmasse abgeleitet wurde.}, language = {de} } @inproceedings{BeirowKuehhornOsterrieder, author = {Beirow, Bernd and K{\"u}hhorn, Arnold and Osterrieder, Peter}, title = {Windinduzierte Schwingungserregung von Fernmeldet{\"u}rmen}, series = {Fluid-Struktur-Wechselwirkung, Tagung Wiesloch, 11. und 12. Juni 2002}, booktitle = {Fluid-Struktur-Wechselwirkung, Tagung Wiesloch, 11. und 12. Juni 2002}, publisher = {VDI-Verlag}, address = {D{\"u}sseldorf}, isbn = {3-18-091682-6}, pages = {407 -- 422}, abstract = {Vorstellung eines stochastischen Verfahrens zur Berechnung windinduzierter Querschwingungen, Pr{\"a}sentation am Beispiel des Fernmeldeturmes Cottbus}, language = {de} } @article{KuehhornBeirowStudener, author = {K{\"u}hhorn, Arnold and Beirow, Bernd and Studener, Johannes}, title = {Messtechnische Beanspruchungsuntersuchungen beim Transport von Glasr{\"o}hrenkollektoren}, language = {de} } @article{KuehhornBeirowKlaukeetal., author = {K{\"u}hhorn, Arnold and Beirow, Bernd and Klauke, Thomas and Golze, Mark}, title = {Simulation der Mistuningeffekte von Hochdruckverdichter-Schaufelscheiben zur Bestimmung kritischer Schwingungen in Flugtriebwerken}, language = {de} } @inproceedings{BeirowOsterriederKuehhorn, author = {Beirow, Bernd and Osterrieder, Peter and K{\"u}hhorn, Arnold}, title = {Stochastisches Konzept f{\"u}r die Berechnung von Stahlschornsteinen infolge wirbelerregter Querschwingungen}, series = {Berichte der Fachtagung Baustatik - Baupraxis 8, am 21. und 22. M{\"a}rz 2002 in Braunschweig}, booktitle = {Berichte der Fachtagung Baustatik - Baupraxis 8, am 21. und 22. M{\"a}rz 2002 in Braunschweig}, editor = {Dinkler, Dieter}, publisher = {TU, Institut f{\"u}r Statik}, address = {Braunschweig}, isbn = {3-926031-95-6}, pages = {271 -- 280}, language = {de} } @inproceedings{KretzschmarBeirow, author = {Kretzschmar, Joachim and Beirow, Bernd}, title = {Dynamic Diagnostic of Timber Structures Supported by Neural Networks}, language = {de} } @inproceedings{KlaukeBeirowKuehhorn, author = {Klauke, Thomas and Beirow, Bernd and K{\"u}hhorn, Arnold}, title = {Experimental and numerical investigations of blade mistuning and strain gauge application effects in aero engine development}, language = {en} } @misc{ChmielewskiGorskiBeirowetal., author = {Chmielewski, Tadeusz and Gorski, Piotr and Beirow, Bernd and Kretzschmar, Joachim}, title = {Theoretical and experimental free vibrations of tall industrial chimney with flexibility of soil}, series = {Engineering structures}, volume = {27}, journal = {Engineering structures}, number = {1}, issn = {0141-0296}, pages = {25 -- 34}, language = {en} } @inproceedings{BeirowKuehhornGolzeetal., author = {Beirow, Bernd and K{\"u}hhorn, Arnold and Golze, Mark and Klauke, Thomas}, title = {Strukturdynamische Untersuchungen an Hochdruckverdichterschaufelscheiben unter Ber{\"u}cksichtigung von Mistuningeffekten}, series = {Modalanalyse und Identifikation, Verfahren und Anwendungen bei dynamischen Systemen, Tagung Wiesloch, 25. und 26. Mai 2004}, booktitle = {Modalanalyse und Identifikation, Verfahren und Anwendungen bei dynamischen Systemen, Tagung Wiesloch, 25. und 26. Mai 2004}, publisher = {VDI-Verlag}, address = {D{\"u}sseldorf}, isbn = {3-18-091825-X}, pages = {351 -- 372}, language = {de} } @inproceedings{KlaukeKuehhornBeirow, author = {Klauke, Thomas and K{\"u}hhorn, Arnold and Beirow, Bernd}, title = {Numerische Untersuchung des Schwingverhaltens von Hochdruckverdichter-Blisks mit fertigungsbedingten Anweichungen}, language = {de} } @inproceedings{BeirowKuehhornNipkau, author = {Beirow, Bernd and K{\"u}hhorn, Arnold and Nipkau, Jens}, title = {On the Influence of Strain Gauge Instrumentation on Blade Vibrations of Integral Blisk Compressor Rotors Applying a Discrete Model}, series = {Proceedings of the ASME Turbo Expo 2009, presented at the 2009 ASME Turbo Expo, June 8 - 12, 2009, Orlando, Florida, USA}, booktitle = {Proceedings of the ASME Turbo Expo 2009, presented at the 2009 ASME Turbo Expo, June 8 - 12, 2009, Orlando, Florida, USA}, publisher = {ASME}, address = {New York, NY}, isbn = {978-0-7918-4887-6}, pages = {245 -- 254}, language = {en} } @inproceedings{BeirowOsterrieder, author = {Beirow, Bernd and Osterrieder, Peter}, title = {Dynamic Investigations of TV Towers}, series = {Structural engineering, mechanics, and computation, proceedings of the International Conference on Structural Engineering, Mechanics, and Computation, 2-4 April 2001, Cape Town, South Africa, Bd. 1}, booktitle = {Structural engineering, mechanics, and computation, proceedings of the International Conference on Structural Engineering, Mechanics, and Computation, 2-4 April 2001, Cape Town, South Africa, Bd. 1}, editor = {Zingoni, Alphose}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0-08-043948-9}, pages = {629 -- 636}, language = {en} } @misc{KuehhornBeirowSchrapeetal., author = {K{\"u}hhorn, Arnold and Beirow, Bernd and Schrape, Sven and Golze, Mark and Kn{\"o}pke, Martin}, title = {Simulation fluidged{\"a}mpfter Strukturschwingungen mittels partitionierter Fluid-Struktur-Kopplung}, series = {Forum der Forschung}, volume = {9}, journal = {Forum der Forschung}, number = {18}, issn = {0947-6989}, pages = {79 -- 86}, language = {de} } @inproceedings{BeirowKuehhornKlauke, author = {Beirow, Bernd and K{\"u}hhorn, Arnold and Klauke, Thomas}, title = {Lokalisierungsph{\"a}nomen bei Hochdruckverdichterschaufelscheiben}, language = {de} } @article{KuehhornBeirowKlauke, author = {K{\"u}hhorn, Arnold and Beirow, Bernd and Klauke, Thomas}, title = {Theoretische und experimentelle Untersuchungen von Schaufelschwingungen bei Verdichterintegralr{\"a}dern}, language = {de} } @inproceedings{StrehlauKuehhornBeirow, author = {Strehlau, Ulrik and K{\"u}hhorn, Arnold and Beirow, Bernd}, title = {Numerische und experimentelle Untersuchungen realer Hochdruckverdichterschaufelscheiben in Integralbauweise}, language = {de} } @inproceedings{SchrapeKuehhornNipkauetal., author = {Schrape, S. and K{\"u}hhorn, Arnold and Nipkau, Jens and Beirow, Bernd}, title = {Application of Aeroelastic Methods in Compressor Cascade Configurations Using Partitioned Code Coupling}, language = {en} } @inproceedings{BeirowKuehhornSchrape, author = {Beirow, Bernd and K{\"u}hhorn, Arnold and Schrape, S.}, title = {Development of a new Nickel-base Alloy 718Plus for Compressor and Turbine disks}, language = {en} } @inproceedings{KlaukeKuehhornBeirow, author = {Klauke, Thomas and K{\"u}hhorn, Arnold and Beirow, Bernd}, title = {Blade Mistuning Induced Blisk Vibration}, series = {1st CEAS European Air and Space Conference 2007, Deutscher Luft- und Raumfahrtkongress 2007, 10 - 13 September 2007, Berlin, Germany, Bd. 1}, booktitle = {1st CEAS European Air and Space Conference 2007, Deutscher Luft- und Raumfahrtkongress 2007, 10 - 13 September 2007, Berlin, Germany, Bd. 1}, publisher = {Dt. Ges. f{\"u}r Luft- und Raumfahrt}, address = {Bonn}, pages = {335 -- 345}, language = {en} } @inproceedings{BeirowKuehhornSchrape, author = {Beirow, Bernd and K{\"u}hhorn, Arnold and Schrape, S.}, title = {Influence of Air Flow on Blisk Vibration Behaviour}, series = {1st CEAS European Air and Space Conference 2007, Deutscher Luft- und Raumfahrtkongress 2007, 10 - 13 September 2007, Berlin, Germany, Bd. 5}, booktitle = {1st CEAS European Air and Space Conference 2007, Deutscher Luft- und Raumfahrtkongress 2007, 10 - 13 September 2007, Berlin, Germany, Bd. 5}, publisher = {Dt. Ges. f{\"u}r Luft- und Raumfahrt}, address = {Bonn}, pages = {3127 -- 3135}, language = {en} } @inproceedings{BeirowKuehhornSchrape, author = {Beirow, Bernd and K{\"u}hhorn, Arnold and Schrape, S.}, title = {Blisk Vibration Phenomena in Consideration of Fluid Structure Interaction}, language = {en} } @inproceedings{BeirowKuehhornSchrape, author = {Beirow, Bernd and K{\"u}hhorn, Arnold and Schrape, S.}, title = {A Discrete model to consider the influence of the air flow on blade vibrations of an intergral blisk compressor rotor}, series = {Proceedings of the ASME Turbo Expo 2008, presented at the 2008 ASME Turbo Expo, June 9 - 13, 2008, Berlin, Germany, Vol. 5, part A}, booktitle = {Proceedings of the ASME Turbo Expo 2008, presented at the 2008 ASME Turbo Expo, June 9 - 13, 2008, Berlin, Germany, Vol. 5, part A}, publisher = {ASME}, address = {New York, NY}, isbn = {978-0-7918-4315-4}, pages = {381 -- 392}, language = {en} } @inproceedings{KlaukeKuehhornBeirowetal., author = {Klauke, Thomas and K{\"u}hhorn, Arnold and Beirow, Bernd and Parchem, Roland}, title = {Blade Vibration Phenomena of HPC Bliscs Considering Manufacturing Effects and Strain Gauge Application}, series = {Proceedings of the ASME Turbo Expo 2008, presented at the 2008 ASME Turbo Expo, June 9 - 13, 2008, Berlin, Germany, Vol. 5, part A}, booktitle = {Proceedings of the ASME Turbo Expo 2008, presented at the 2008 ASME Turbo Expo, June 9 - 13, 2008, Berlin, Germany, Vol. 5, part A}, publisher = {ASME}, address = {New York, NY}, isbn = {978-0-7918-4315-4}, pages = {403 -- 413}, language = {en} } @article{NipkauSchrapeBeirowetal., author = {Nipkau, Jens and Schrape, S. and Beirow, Bernd and K{\"u}hhorn, Arnold}, title = {Bestimmung aeroelastischer Parameter einer Hochdruckverdichter Stufe mit Hilfe Fluid-Struktur gekoppelter Berechnungen}, language = {de} } @inproceedings{GierschBeirowPopigetal., author = {Giersch, Thomas and Beirow, Bernd and Popig, Frederik and K{\"u}hhorn, Arnold}, title = {FSI-based forced response analyses of a mistuned high pressure compressor blisk}, series = {10th International Conference on Vibrations in Rotating Machinery, 11-13 September 2012, IMechE London, UK}, booktitle = {10th International Conference on Vibrations in Rotating Machinery, 11-13 September 2012, IMechE London, UK}, publisher = {Woodhead Publ.}, address = {Cambridge, UK}, isbn = {978-0-85709-452-0}, language = {en} } @inproceedings{BeirowKuehhornNipkau, author = {Beirow, Bernd and K{\"u}hhorn, Arnold and Nipkau, Jens}, title = {Schwingungsverhalten integraler Hochdruckverdichterlaufr{\"a}der unter Ber{\"u}cksichtigung von Fluid-Struktur-Wechselwirkung und Mistuning}, series = {61. Deutscher Luft- und Raumfahrtkongress 2012, 10. - 12. September 2012, Estrel Berlin}, booktitle = {61. Deutscher Luft- und Raumfahrtkongress 2012, 10. - 12. September 2012, Estrel Berlin}, publisher = {Deutsche Gesellschaft f{\"u}r Luft- und Raumfahrt - Lilienthal-Oberth e.V.}, address = {Bonn}, pages = {9}, language = {de} } @inproceedings{GierschHoenischBeirowetal., author = {Giersch, Thomas and H{\"o}nisch, Peter and Beirow, Bernd and K{\"u}hhorn, Arnold}, title = {Forced Response Analyses of Mistuned Radial Inflow Turbines}, series = {Proceedings of the ASME Turbo Expo 2012 : presented at the 2012 ASME Turbo Expo, June 11 - 15, 2012, Copenhagen, Denmark, Vol. 7, part B}, booktitle = {Proceedings of the ASME Turbo Expo 2012 : presented at the 2012 ASME Turbo Expo, June 11 - 15, 2012, Copenhagen, Denmark, Vol. 7, part B}, publisher = {ASME}, address = {New York, NY}, isbn = {978-0-7918-4473-1}, pages = {1559 -- 1570}, language = {en} } @misc{GierschHoenischBeirowetal., author = {Giersch, Thomas and H{\"o}nisch, Peter and Beirow, Bernd and K{\"u}hhorn, Arnold}, title = {Forced Response Analyses of Mistuned Radial Inflow Turbines}, series = {Journal of Turbomachinery}, volume = {135}, journal = {Journal of Turbomachinery}, number = {3}, issn = {1528-8900}, doi = {10.1115/1.4007512}, pages = {031034-1 -- 031034-9}, abstract = {Radial turbine wheels designed as blade integrated disks (blisk) are widely used in various industrial applications. However, related to the introduction of exhaust gas turbochargers in the field of small and medium sized engines, a sustainable demand for radial turbine wheels has come along. Despite those blisks being state of the art, a number of fundamental problems, mainly referring to fluid-structure-interaction and, therefore, to the vibration behavior, have been reported. Aiming to achieve an enhanced understanding of fluid-structure-interaction in radial turbine wheels, a numerical method, able to predict forced responses of mistuned blisks due to aerodynamic excitation, is presented. In a first step, the unsteady aerodynamic forcing is determined by modeling the spiral casing, the stator vanes, and the rotor blades of the entire turbine stage. In a second step, the aerodynamic damping induced by blade vibration is computed using a harmonic balance technique. The structure itself is represented by a reduced order model being extended by aerodynamic damping effects and aerodynamic forcings. Mistuning is introduced by adjusting the modal stiffness matrix based on results of blade by blade measurements that have been performed at rest. In order to verify the numerical method, the results are compared with strain-gauge data obtained during rig-tests. As a result, a measured low engine order excitation was found by modeling the spiral casing. Furthermore, a localization phenomenon due to frequency mistuning could be proven. The predicted amplitudes are close to the measured data.}, language = {en} } @misc{BeirowGierschKuehhornetal., author = {Beirow, Bernd and Giersch, Thomas and K{\"u}hhorn, Arnold and Nipkau, Jens}, title = {Forced Response Analysis of a Mistuned Compressor Blisk}, series = {Journal of Engineering for Gas Turbines and Power}, volume = {136}, journal = {Journal of Engineering for Gas Turbines and Power}, number = {6}, issn = {1528-8919}, doi = {10.1115/1.4026537}, pages = {13}, abstract = {The forced response of an E3E-type high pressure compressor (HPC) blisk front rotor is analyzed with regard to varying mistuning and the consideration of the fluid-structure interaction (FSI). For that purpose, a reduced order model is used in which the disk remains unchanged and mechanical properties of the blades, namely stiffness and damping, are adjusted to measured as well as intentional blade frequency mistuning distributions. The aerodynamic influence coefficient technique is employed to model the aeroelastics. Depending on the blade mode, the exciting engine order, and aerodynamic influences, it is sought for the worst mistuning distributions with respect to the maximum blade displacement based on optimization analyses. Genetic algorithms using blade-alone frequencies as design variables are applied. The validity of the Whitehead limit is assessed in this context. In particular, the question is addressed if and how far aeroelastic effects, mainly caused by aerodynamic damping, combined with mistuning can even cause a reduction of the forced response compared to the ideally tuned blisk. It is shown that the strong dependence of the aerodynamic damping on the interblade phase angle is the main driver for a possible response attenuation considering the fundamental as well as a higher blade mode. Furthermore, the differences to the blisk vibration response without a consideration of the flow and an increase of the disk's stiffness are discussed. Closing, the influence of pure damping mistuning is analyzed again using optimization.}, language = {en} } @misc{BeirowGierschKuehhornetal., author = {Beirow, Bernd and Giersch, Thomas and K{\"u}hhorn, Arnold and Nipkau, Jens}, title = {Optimization-Aided Forced Response Analysis of a Mistuned Compressor Blisk}, series = {Journal of Engineering for Gas Turbines and Power}, volume = {137}, journal = {Journal of Engineering for Gas Turbines and Power}, number = {1}, issn = {1528-8919}, doi = {10.1115/1.4028095}, pages = {012504-1 -- 012504-10}, abstract = {The forced response of the first rotor of an engine 3E (technology program) (E3E)-type high pressure compressor (HPC) blisk is analyzed with regard to varying mistuning, varying engine order (EO) excitations and the consideration of aero-elastic effects. For that purpose, subset of nominal system modes (SNM)-based reduced order models are used in which the disk remains unchanged while the Young's modulus of each blade is used to define experimentally adjusted as well as intentional mistuning patterns. The aerodynamic influence coefficient (AIC) technique is employed to model aero-elastic interactions. Furthermore, based on optimization analyses and depending on the exciting EO and aerodynamic influences it is searched for the worst as well as the best mistuning distributions with respect to the maximum blade displacement. Genetic algorithms using blade stiffness variations as vector of design variables and the maximum blade displacement as objective function are applied. An allowed limit of the blades' Young's modulus standard deviation is formulated as secondary condition. In particular, the question is addressed if and how far the aero-elastic impact, mainly causing aerodynamic damping, combined with mistuning can even yield a reduction of the forced response compared to the ideally tuned blisk. It is shown that the strong dependence of the aerodynamic damping on the interblade phase angle is the main driver for a possible response attenuation considering the fundamental blade mode. The results of the optimization analyses are compared to the forced response due to real, experimentally determined frequency mistuning as well as intentional mistuning.}, language = {en} } @inproceedings{BeirowKuehhornNipkau, author = {Beirow, Bernd and K{\"u}hhorn, Arnold and Nipkau, Jens}, title = {Forced Response Reduction of a Compressor Blisk Rotor Employing Intentional Mistuning}, series = {Advances in Mechanism Design II, Proceedings of the XII International Conference on the Theory of Machines and Mechanisms, 6.-8.9.2016, Liberec}, booktitle = {Advances in Mechanism Design II, Proceedings of the XII International Conference on the Theory of Machines and Mechanisms, 6.-8.9.2016, Liberec}, publisher = {Springer International Publishing}, address = {Cham}, isbn = {978-3-319-44087-3}, doi = {10.1007/978-3-319-44087-3_29}, pages = {223 -- 229}, abstract = {Using the example of a compressor test blisk with 29 blades different sources of mistuning and their consequences for the forced response are analysed under consideration of aeroelastic effects. In particular the impact of superimposing intentional structural mistuning by both random structural mistuning and aerodynamic mistuning is studied. For this purpose reduced order models of the blisk are adjusted for different mistuning distributions. The mistuning itself is characterized by assigning individual stiffness parameters to each blade. The aeroelastic coupling is included employing aerodynamic influence coefficients. By means of genetic algorithm optimizations, structural mistuning patterns are found which yield a mitigation of the forced response below that of the tuned design reference. Ideally a nearly 50 \% reduction of maximum response magnitudes is computed for the fundamental bending mode and large mistuning. The solutions found have been proven to be robust with respect to additional random and aerodynamic mistuning in case of large intentional structural mistuning.}, language = {en} } @misc{BeirowFigaschewskyKuehhornetal., author = {Beirow, Bernd and Figaschewsky, Felix and K{\"u}hhorn, Arnold and Bornholm, Alfons}, title = {Modal Analyses of an Axial Turbine Blisk With Intentional Mistuning}, series = {Journal of Engineering for Gas Turbines and Power}, volume = {140}, journal = {Journal of Engineering for Gas Turbines and Power}, number = {1}, issn = {0742-4795}, doi = {10.1115/1.4037588}, pages = {012503-1 -- 012503-11}, abstract = {The potential of intentional mistuning to reduce the maximum forced response is analyzed within the development of an axial turbine blisk for ship diesel engine turbocharger applications. The basic idea of the approach is to provide an increased aerodynamic damping level for particular engine order excitations and mode shapes without any significant distortions of the aerodynamic performance. The mistuning pattern intended to yield a mitigation of the forced response is derived from an optimization study applying genetic algorithms. Two blisk prototypes have been manufactured a first one with and another one without employing intentional mistuning. Hence, the differences regarding the real mistuning and other modal properties can be experimentally determined and evaluated as well. In addition, the experimental data basis allows for updating structural models which are well suited to compute the forced response under operational conditions. In this way, the real benefit achieved with the application of intentional mistuning is demonstrated.}, language = {en} } @misc{BeirowKuehhornFigaschewskyetal., author = {Beirow, Bernd and K{\"u}hhorn, Arnold and Figaschewsky, Felix and Bornholm, Alfons and Repetckii, Oleg V.}, title = {Forced Response Reduction of a Blisk by Means of Intentional Mistuning}, series = {Journal of Engineering for Gas Turbines and Power}, volume = {141}, journal = {Journal of Engineering for Gas Turbines and Power}, number = {1}, issn = {1528-8919}, doi = {10.1115/1.4040715}, pages = {011008-1 -- 011008-8}, abstract = {The effect of intentional mistuning has been analyzed for an axial turbocharger blisk with the objective of limiting the forced response due to low engine order excitation (LEO). The idea behind the approach was to increase the aerodynamic damping for the most critical fundamental mode in a way that a safe operation is ensured without severely losing aerodynamic performance. Apart from alternate mistuning a more effective mistuning pattern is investigated, which has been derived by means of optimization employing genetic algorithms. In order to keep the manufacturing effort as small as possible only two blade different geometries have been allowed which means that an integer optimization problem has been formulated. Two blisk prototypes have been manufactured for the purpose of demonstrating the benefit of the intentional mistuning pattern identified in this way: A first one with and a second one without employing intentional mistuning. The real mistuning of the prototypes has been experimentally identified. It is shown that the benefit regarding the forced response reduction is retained in spite of the negative impact of unavoidable additional mistuning due to the manufacturing process. Independently, further analyzes have been focused on the robustness of the solution by considering increasing random structural mistuning and aerodynamic mistuning as well. The latter one has been modeled by means of varying aerodynamic influence coefficients (AIC) as part of Monte Carlo simulations. Reduced order models have been employed for these purposes.}, language = {en} } @misc{BeirowFigaschewskyKuehhornetal., author = {Beirow, Bernd and Figaschewsky, Felix and K{\"u}hhorn, Arnold and Bornholm, Alfons}, title = {Vibration Analysis of an Axial Turbine Blisk with Optimized Intentional Mistuning Pattern}, series = {Journal of Sound and Vibration}, volume = {442}, journal = {Journal of Sound and Vibration}, issn = {0022-460X}, doi = {10.1016/j.jsv.2018.10.064}, pages = {11 -- 27}, abstract = {With the objective of attenuating the forced response of an axial turbine blisk for ship Diesel engine applications efforts have been made to increase the aerodynamic damping contribution for the most critical modes. In this regard the potential of intentional mistuning is investigated since it offers the opportunity to ensure a safe operation without a severe loss of aerodynamic performance. Genetic algorithms have been chosen to derive an optimized mistuning pattern resulting in a forced response clearly below that of the tuned counterpart. In order to keep the manufacturing effort within a limit only two possible blade geometries are allowed, which means that an integer optimization problem has been formulated. For the purpose of demonstrating the benefit of the intentional mistuning pattern found, two blisk prototypes have been manufactured: One with and another one without employing intentional mistuning for purposes of comparison. Furthermore, this offers the opportunity for an experimental determination of actually manufactured mistuning and other modal properties as well. The experimental data basis is employed to update structural models, which are well suited to demonstrate the forced response reduction under operational conditions. Finally, the robustness of the gain achieved with intentional mistuning could be proved towards both additional but unavoidable random structural and aerodynamic mistuning.}, language = {en} } @misc{WeberKuehhornBeirow, author = {Weber, Robby and K{\"u}hhorn, Arnold and Beirow, Bernd}, title = {Mistuning und D{\"a}mpfung radialer Turbinen- und Verdichterlaufr{\"a}der}, series = {MTZ - Motortechnische Zeitschrift}, volume = {80}, journal = {MTZ - Motortechnische Zeitschrift}, number = {9}, issn = {0024-8525}, doi = {10.1007/s35146-019-0094-2}, pages = {74 -- 78}, abstract = {Turbolader tragen erheblich zur Steigerung des Motorenwirkungsgrads bei. Rotierende Komponenten sind infolge der Fliehkraft, der zur Aufladung notwendigen Str{\"o}mungsumlenkungen, der instation{\"a}ren Druckschwankungen der Str{\"o}mung sowie von Temperaturgradienten als hochbelastete Laufr{\"a}der einzustufen, die unter erheblicher Schwingungsanf{\"a}lligkeit leiden. Am Lehrstuhl Strukturmechanik und Fahrzeugschwingungen der BTU Cottbus-Senftenberg wurde im Rahmen eines FVV-Forschungsvorhabens der Einfluss der fertigungsbedingten Toleranzen auf eben jenes Schwingungsverhalten untersucht. Es wird nachgewiesen, dass Intentional Mistuning zu signifikant niedrigeren Belastungen f{\"u}hren kann.}, language = {de} } @misc{HeinrichUnglaubeBeirowetal., author = {Heinrich, Christoph Rocky and Unglaube, Tina and Beirow, Bernd and Brillert, Dieter and Steff, Klaus and Petry, Nico}, title = {Surrogate Models for the Prediction of Damping Ratios in Coupled Acoustoelastic Rotor-Cavity Systems}, series = {Proceedings of ASME Turbo Expo 2021, ASME Paper Number: GT2021-58835}, journal = {Proceedings of ASME Turbo Expo 2021, ASME Paper Number: GT2021-58835}, abstract = {The oil and gas, chemical, and process industries employ centrifugal compressors for a wide range of applications. Due to this, the conditions, under which centrifugal compressors have to operate, vary significantly from case to case. Gas pipeline compressors, for example, may feature discharge pressures well over 100 bar. In other fields of application, like gas injection for enhanced oil recovery, discharge pressures over 600 bar and gas densities over 300 kg/m^3 are not uncommon. During the last decades, comprehensive research was conducted on the impact of high pressure operating conditions on the vibrational behavior of centrifugal compressor wheels. In multiple studies, acoustic modes building up in the side cavities were found to be a potential source of high cycle fatigue in radial compressors. Nowadays, it is well-known that an increase in gas pressure levels leads to a more pronounced fluid-structure interaction between the side cavities and the impeller resulting in a frequency shift of the acoustic and structural modes. For the safe operation of compressors, it is necessary to predict these coupled natural frequencies accurately. The state-of-the-art approach to achieve this objective is the finite element method. In a recently published paper, the authors presented a generalized model to predict the natural frequencies and mode shapes of acoustoelastic rotor-cavity systems. This approach reduces the computational cost significantly while retaining the accuracy of a finite element simulation. So far, the model was only validated using measurement data of an impeller at standstill under varying cavity pressures. In this study, the authors show that the generalized model can predict the natural frequencies of rotating systems with sufficient accuracy by using measurement data of a disk spinning at multiple rotational speeds in a cylindrical cavity. As it is not always possible to avoid operating close to or accelerate through a resonance of the compressor, it is crucial to know the damping present within the system that limits the amplitudes for a given excitation force. While many studies focus on the identification of damping ratios in axial turbomachines, only a few publications concentrate on the damping of radial impellers. Therefore, the authors present measurement data acquired from the test rig at University Duisburg-Essen, Chair of Turbomachinery, which reveals the damping behavior of a spinning disk under varying operating conditions. Three surrogate models are proposed to predict the identified damping behavior. The first one is based solely on a one-dimensional piston model. The second approach uses an enhanced version of the generalized method, while the third one is a combination of both. After deriving these three models, the measurement data is used to validate the surrogate systems. The paper concludes with a discussion of the measurement results and the benefits and limitations of the proposed models.}, language = {en} } @misc{NakosBeirowZobel, author = {Nakos, Alex and Beirow, Bernd and Zobel, Arthur}, title = {Mistuning and Damping of a Radial Turbine Wheel. Part 1: Fundamental Analyses and Design of Intentional Mistuning Pattern}, series = {Proceedings of ASME Turbo Expo 2021, ASME Paper Number: GT2021-59283}, journal = {Proceedings of ASME Turbo Expo 2021, ASME Paper Number: GT2021-59283}, abstract = {The radial turbine impeller of an exhaust turbocharger is analyzed in view of both free vibration and forced response. Stator vane rings located upstream between engine and turbine wheel are applied to guide the exhaust gases in optimized flow directions. Hence, turbine wheels are subjected to aerodynamic excitations causing forced vibrations of blades and the whole turbine. Due to random blade mistuning resulting from unavoidable inaccuracies in manufacture or material inhomogeneities, localized modes of vibration may arise, which involve the risk of severely magnified blade displacements and inadmissibly high stress levels compared to the tuned counterpart. In consequence, damages may occur along with a dramatic decrease of efficiency or even a total failure during engine operation as worst-case scenarios. Contrary, the use of intentional mistuning has proved to be an efficient measure to mitigate the forced response. Independently, the presence of aerodynamic damping is significant with respect to limit the forced response since structural damping ratios of blade integrated disks (blisks) typically take extremely low values. Thus, a detailed knowledge of respective damping ratios would be desirable while developing a robust blisk design. For this, far-reaching experimental investigations are carried out to determine damping curves of a comparative wheel within a wide pressure range by simulating operation conditions in a pressure tank. They are the basis to develop empirical formulas for damping estimation which could be be taken into account during future design processes. In order to get an idea of the real structural behaviour, further measurements are conducted to determine the present mistuning of the turbine wheel, which facilitates to update structural models and finally allows to compute the forced response in an accurate manner. Reduced order models are built up for designing suitable intentional mistuning patterns by using the subset of nominal system mode (SNM) approach introduced by Yang and Griffin [1], which conveniently allows for accounting both differing mistuning patterns and the impact of aeroelastic interaction. For this, the aerodynamic damping curves are determined by means of computational flow simulations. The SNM approach finally provides appropriate mistuning patterns by conducting optimization studies based on genetic algorithms. The robustness of the found solutions is proved by additionally superimposing both random mistuning and experimentally determined mistuning of the original wheel. Finite element analyses are carried out in order to identify appropriate measures to implement intentional mistuning patterns, which are featuring only two different blade designs. In detail, the impact of specific geometric modifications on blade natural frequencies is investigated. After implementation of the intentional mistuning pattern, which will be described in Part 2 of this paper later on, the success of taken measures will be reviewed based on both, experimental testing at standstill conditions and in a test stand by running the wheel under realistic operational conditions. [1] Yang, M. T., Griffin, J. H., „A Reduced-Order model of Mistuning Using a Subset of Nominal System Modes". J Eng Gas Turb Power, 123, pp. 893-900 (2001).}, language = {en} } @misc{NakosBeirowZobel, author = {Nakos, Alex and Beirow, Bernd and Zobel, Arthur}, title = {Mistuning and Damping of a Radial Turbine Wheel. Part 1: Fundamental Analyses and Design of Intentional Mistuning Pattern}, series = {Journal of Engineering for Gas Turbines and Power}, volume = {144}, journal = {Journal of Engineering for Gas Turbines and Power}, number = {2}, issn = {1528-8919}, pages = {9}, abstract = {The radial turbine impeller of an exhaust turbocharger is analyzed in view of both free vibration and forced response. Due to random blade mistuning resulting from unavoidable inaccuracies in manufacture or material inhomogeneities, localized modes of vibration may arise, which involve the risk of severely magnified blade displacements and inadmissibly high-stress levels compared to the tuned counterpart. Contrary, the use of intentional mistuning (IM) has proved to be an efficient measure to mitigate the forced response. Independently, the presence of aerodynamic damping is significant with respect to limit the forced response since structural damping ratios of integrally bladed rotors typically take extremely low values. Hence, detailed knowledge of respective damping ratios would be desirable while developing a robust rotor design. For this, far-reaching experimental investigations are carried out to determine the damping of a comparative wheel within a wide pressure range by simulating operation conditions in a pressure tank. Reduced-order models are built up for designing suitable intentional mistuning patterns by using the subset of nominal system modes approach introduced by Yang and Griffin (2001, "A Reduced-Order Model of Mistuning Using a Subset of Nominal System Modes," J. Eng. Gas Turbines Power, 123(4), pp. 893-900), which conveniently allows for accounting both differing mistuning patterns and the impact of aeroelastic interaction by means of aerodynamic influence coefficients. Further, finite element analyses are carried out in order to identify appropriate measures of how to implement intentional mistuning patterns, which are featuring only two different blade designs. In detail, the impact of specific geometric modifications on blade natural frequencies is investigated. The first part of this three-part paper is focused on designing the IM pattern. The second and third part following, later on, will address the topics (i) experimental validation after implementation of the IM pattern at rest and under rotation, and (ii) the development of an approach for fast estimating damping ratios in the design phase.}, language = {en} } @misc{HeinrichUnglaubeBeirowetal., author = {Heinrich, Christoph Rocky and Unglaube, Tina and Beirow, Bernd and Brillert, Dieter and Steff, Klaus and Petry, Nico}, title = {Surrogate Models for the Prediction of Damping Ratios in Coupled Acoustoelastic Rotor-Cavity Systems}, series = {Journal of Engineering for Gas Turbines and Power}, volume = {144}, journal = {Journal of Engineering for Gas Turbines and Power}, number = {8}, issn = {1528-8919}, doi = {10.1115/1.4054567}, abstract = {Centrifugal compressors are versatile machines that many industries employ for a wide range of different applications, including the production of highly compressed gases. During the last decades, comprehensive research was conducted on the impact of high-pressure operating conditions on the vibrational behavior of radial compressors. In various studies, acoustic modes building up in the side cavities were found to be a potential source of high cycle fatigue. Nowadays, it is well-known that an increase in gas pressure levels leads to a more pronounced fluid-structure interaction between the side cavities and the impeller resulting in a frequency shift of the acoustic and structural modes. In a recently published paper, the authors presented a generalized model which can predict this behavior. As it is not always possible to avoid operating close to or accelerating through a resonance, it is crucial to know the damping present within the system. Currently, only a few publications concentrate on the damping of radial impellers. Therefore, the authors present measurement data acquired from a test rig at the University of Duisburg-Essen, which reveals the damping behavior of a disk under varying operating conditions. Two surrogate models are proposed to predict the identified damping behavior. The first one is based solely on a one-dimensional piston model and the second approach uses an enhanced version of the generalized method. Finally, the measurement data is used to validate both surrogate systems.}, language = {en} } @misc{RepetckiiVinhBeirow, author = {Repetckii, Oleg V. and Vinh, Nguyen Van and Beirow, Bernd}, title = {Sensitivity Analysis Regarding the Impact of Intentional Mistuning on Blisk Vibrations}, series = {Mechanisms and Machine Science}, volume = {125}, journal = {Mechanisms and Machine Science}, publisher = {Springer}, address = {Cham}, issn = {2211-0992}, doi = {10.1007/978-3-031-15758-5_41}, pages = {408 -- 415}, abstract = {The effect of different intentional mistuning (IM) patterns is investigated with respect to the forced response of an academic axial blisk. It could be shown in numerical analyses that a preliminary use of sensitivity algorithms helps to understand the feasibility and efficiency of introducing geometric changes of the blades. The implementation of IM patterns requires conducting intensive sensitivity studies based on FE simulations in order to identify the consequences of slight geometrical blade modifications on natural frequencies. Typical changes might be a modification of fillet radii or partial modifications of blade thickness, which are most suitable to adjust a target natural frequency without a severe loss of aerodynamic performance. A software tool developed at Irkutsk SAU is employed to evaluate the impact of mass and stiffness contributions, and with that, geometric deviations on blade natural frequencies. Intensive blade vibration due to aerodynamic excitation of blisks is known as major source of high cycle fatigue, which may cause severe failures of turbine and compressor wheels during operation. The problem is relevant for several sectors of industry such as power generation, aviation or vehicle manufacturing. In consequence, there is a broad request of preventing any inadmissible vibration at any time. The application of IM can be regarded as powerful tool to avoid both, large forced responses and self-excited vibration. However, there is a lack of knowledge about how to implement mistuning without strong distortions of the flow passage. The main objective of this work is to close this gap based on comprehensive numerical analyses with regard to the effects of intended geometric modifications of blades on modal quantities. Using FE models, the effectiveness of the proposed block models of mistuning is analyzed with and without taking into account the operational speed of the axial impeller. In conclusion, the consequences of different IM implementations on the forced response of an academic blisk are discussed. In particular, the most promising IM patterns are identified yielding the least forced response.}, language = {en} } @misc{NakosBeirowZobel, author = {Nakos, Alex and Beirow, Bernd and Zobel, Arthur}, title = {Mistuning and Damping of a Radial Turbine Wheel. Part 2: Implementation and Validation of Intentional Mistuning}, series = {ASME 2022 Turbomachinery Technical Conference \& Exposition (GT2022)}, journal = {ASME 2022 Turbomachinery Technical Conference \& Exposition (GT2022)}, abstract = {A radial turbine impeller of an exhaust turbocharger is analyzed in view of both free vibration and forced response. Due to random blade mistuning resulting from unavoidable inaccuracies in manufacture or material inhomogeneities, localized modes of vibration may arise, which involve the risk of severely magnified blade displacements and inadmissibly high stress levels compared to the tuned counterpart. Contrary, the use of intentional mistuning (IM) has proved to be an efficient measure to mitigate the forced response. In part one of this three-part paper fundamental analyses have been carried out to find a suitable intentional mistuning pattern which is featuring only two different blade designs [1]. This part is focused on the implementation and validation of the intentional mistuning pattern and discusses the detailed geometric adaption of the turbine wheel hardware. The final design of the geometric adaption is developed in terms of manufacturability and efficiency so that a reliable and robust solution is presented. Its machined adaption is validated by both vibration testing at rest and optical measurements so that manufacturing deviations are detected and their impacts discussed and evaluated. Reduced order models are built up for checking the effect of the implemented intentional mistuning pattern on the forced response by using the subset of nominal system modes (SNM) approach introduced by Yang and Griffin [2], which conveniently allows for accounting both the design intention of the mistuning pattern and the actually machined implementation due to manufacturing deviations.}, language = {en} } @misc{GambittaBeirowKlauke, author = {Gambitta, Marco and Beirow, Bernd and Klauke, Thomas}, title = {Investigation of Rear Blisk Drum Dynamics Under Consideration of Multi-Stage Coupling}, series = {ASME Journal of Engineering for Gas Turbines and Power}, volume = {146}, journal = {ASME Journal of Engineering for Gas Turbines and Power}, number = {2}, doi = {10.1115/1.4063633}, pages = {8}, abstract = {The analysis of the structural dynamics of multistage cyclic structures as linked components is required to model the interstage coupling. In turbomachinery, this can result in a collaboration between different compressor or turbine stages. This paper investigates the coupling between two rear drum blade integrated disk stages of an axial compressor to support the mechanical design process. Considering the vibration modeshapes of a multistage system, different components may coparticipate in the dynamics. For this reason, criteria to identify the modes affected by the coupling and to quantify this coupling are defined. This allows to distinguish between modes with interstage coupling, requiring the multistage system for their description, and uncoupled modes, involving a single stage. In addition, it is of interest to research methods to reduce the impact of the coupling on the vibrating system without drastically altering the geometry of the components. The vibration analyses of a two-stage compressor generalized geometry, representative of a compressor rear drum blisk, are presented as a study case. The use of a reducing method allows to describe the behavior of the nominal multistage system with a computationally efficient technique, enabling a parametric analysis of the stages' coupling. The investigation considers the effect of a set of geometrical and mechanical parameters on the dynamics, identifying the driving parameters of the coupled vibration characteristics.}, language = {en} } @misc{BeirowGolzePopig, author = {Beirow, Bernd and Golze, Mark and Popig, Frederik}, title = {Vibration Reduction of a Steam Turbine Wheel by Means of Intentional Mistuning}, series = {Advances in Mechanism Design III : Proceedings of TMM 2020}, journal = {Advances in Mechanism Design III : Proceedings of TMM 2020}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-83593-4}, issn = {2211-0984}, doi = {10.1007/978-3-030-83594-1_8}, pages = {73 -- 82}, abstract = {A last stage steam turbine wheel is analyzed with the objective to alleviate the flutter susceptibility by employing intentional mistuning (IM). In particular, the operation at nominal speed under part-load conditions may cause unfavorable flow conditions facilitating flow separation. In consequence, negative aerodynamic damping ratios occur for the first bending mode family in some circumstances. Employing intended alternate mistuning of adequate magnitude has proved to be a promising measure to stabilize rotors in terms of avoiding self-excited vibration phenomena. From the manufacturing point of view, this two-blade design is advantageous as well and hence, chosen here as a first measure to attenuate flutter susceptibility. Two prototypes of bladed disks series have been made, which are exhibiting small but unavoidable deviations from the design intention due to manufacturing. The real blade alone frequencies have been identified within foregoing experimental investigations. Numerical modal analyses carried out for the prototypes as manufactured finally reveal that there is an additional positive contribution of random mistuning in terms of further enhancing the least aerodynamic damping ratio. Another promising and robust IM pattern is found by using generic algorithms to optimize the least aerodynamic damping ratio yielding stable conditions at any time as well. Moreover, it shows that IM combined with random mistuning also mitigates the maximum forced response at part-speed conditions.}, language = {en} } @inproceedings{BeirowFigaschewskyKuehhorn, author = {Beirow, Bernd and Figaschewsky, Felix and K{\"u}hhorn, Arnold}, title = {An Inverse Approach to Identify Tuned Aerodynamic Damping, System Frequencies, and Mistuning, Part 2: Application to Blisks at Rest}, series = {Proceedings of the 15th International Symposium on Unsteady Aerodynamics, Aeroacoustics \& Aeroelasticity of Turbomachines, ISUAAAT15, 24-27 September 2018, University of Oxford, UK}, booktitle = {Proceedings of the 15th International Symposium on Unsteady Aerodynamics, Aeroacoustics \& Aeroelasticity of Turbomachines, ISUAAAT15, 24-27 September 2018, University of Oxford, UK}, publisher = {ISUAAAT Scientific Committee}, pages = {2}, language = {en} } @inproceedings{KochBeirowFilippatosetal., author = {Koch, Ilja and Beirow, Bernd and Filippatos, Angelos and K{\"u}hhorn, Arnold and Gude, Maik}, title = {Methodical Approach for Simulation the Vibration of Damaged Fibre Reinforced Composite Rotors Under Consideration of Aerodynamic Influences}, series = {18th European Conference on Composite Materials (ECCM18), Athen (Griechenland), 25.-28. Juni 2018}, booktitle = {18th European Conference on Composite Materials (ECCM18), Athen (Griechenland), 25.-28. Juni 2018}, pages = {8}, language = {en} } @inproceedings{BeirowKuehhornFigaschewskyetal., author = {Beirow, Bernd and K{\"u}hhorn, Arnold and Figaschewsky, Felix and Bornholm, Alfons and Repetckii, Oleg V.}, title = {Forced Response Reduction of a Blisk by Means of Intentional Mistuning}, series = {ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Volume 7C: Structures and Dynamics, Oslo, Norway, June 11-15, 2018}, booktitle = {ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Volume 7C: Structures and Dynamics, Oslo, Norway, June 11-15, 2018}, publisher = {ASME}, address = {New York, NY}, isbn = {978-0-7918-5115-9}, doi = {10.1115/GT2018-76584}, pages = {10}, abstract = {The effect of intentional mistuning has been analyzed for an axial turbocharger blisk with the objective of limiting the forced response due to low engine order excitation (LEO). The idea behind the approach was to increase the aerodynamic damping for the most critical fundamental mode in a way that a safe operation is ensured without severely losing aerodynamic performance. Apart from alternate mistuning a more effective mistuning pattern is investigated, which has been derived by means of optimization employing genetic algorithms. In order to keep the manufacturing effort as small as possible only two blade different geometries have been allowed which means that an integer optimization problem has been formulated. Two blisk prototypes have been manufactured for the purpose of demonstrating the benefit of the intentional mistuning pattern identified in this way: A first one with and a second one without employing intentional mistuning. The real mistuning of the prototypes has been experimentally identified. It is shown that the benefit regarding the forced response reduction is retained in spite of the negative impact of unavoidable additional mistuning due to the manufacturing process. Independently, further analyzes have been focused on the robustness of the solution by considering increasing random structural mistuning and aerodynamic mistuning as well. The latter one has been modeled by means of varying aerodynamic influence coefficients (AIC) as part of Monte Carlo simulations. Reduced order models have been employed for these purposes.}, language = {en} } @inproceedings{BeirowFigaschewskyKuehhornetal., author = {Beirow, Bernd and Figaschewsky, Felix and K{\"u}hhorn, Arnold and Bornholm, Alfons}, title = {Vibration Analysis of an Axial Turbine Blisk with Optimized Intentional Mistuning Pattern}, series = {Proceedings of ISROMAC 2017, Maui, Hawaii, December 16-21, 2017}, booktitle = {Proceedings of ISROMAC 2017, Maui, Hawaii, December 16-21, 2017}, pages = {9}, abstract = {Aiming to limit the forced response of an axial turbine blisk for ship Diesel engine applications efforts have been made to increase the aerodynamic damping contribution for the most critical modes. In this regard the potential of intentional mistuning is investigated since it offers the opportunity to ensure a safe operation without a severe loss of aerodynamic performance. Genetic algorithms have been chosen to derive an optimized mistuning pattern. In order to keep the manufacturing effort within a limit only two possible blade geometries are allowed which means that an integer optimization problem has been formulated. For the purpose of demonstrating the benefit of the intentional mistuning pattern found, two blisk prototypes have been manufactured: One with and another one without employing intentional mistuning for purposes of comparison. Furthermore, this offers the opportunity for an experimental determination of mistuning being really manufactured and other modal properties as well. The experimental data basis is employed to update structural models which are well suited to demonstrate the forced response reduction under operational conditions.}, language = {en} } @inproceedings{FigaschewskyKuehhornBeirowetal., author = {Figaschewsky, Felix and K{\"u}hhorn, Arnold and Beirow, Bernd and Giersch, Thomas and Schrape, Sven}, title = {Analysis of Mistuned Forced Response in an Axial High Pressure Compressor Rig With Focus on Tyler-Sofrin Modes}, series = {ISABE 2017, ISABE-2017-22614, Manchester, September 3.-8., 2017}, booktitle = {ISABE 2017, ISABE-2017-22614, Manchester, September 3.-8., 2017}, publisher = {ISABE}, pages = {21}, language = {en} }