@misc{BeirowGolzePopig, author = {Beirow, Bernd and Golze, Mark and Popig, Frederik}, title = {Vibration Reduction of a Steam Turbine Wheel by Means of Intentional Mistuning}, series = {Advances in Mechanism Design III : Proceedings of TMM 2020}, journal = {Advances in Mechanism Design III : Proceedings of TMM 2020}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-83593-4}, issn = {2211-0984}, doi = {10.1007/978-3-030-83594-1_8}, pages = {73 -- 82}, abstract = {A last stage steam turbine wheel is analyzed with the objective to alleviate the flutter susceptibility by employing intentional mistuning (IM). In particular, the operation at nominal speed under part-load conditions may cause unfavorable flow conditions facilitating flow separation. In consequence, negative aerodynamic damping ratios occur for the first bending mode family in some circumstances. Employing intended alternate mistuning of adequate magnitude has proved to be a promising measure to stabilize rotors in terms of avoiding self-excited vibration phenomena. From the manufacturing point of view, this two-blade design is advantageous as well and hence, chosen here as a first measure to attenuate flutter susceptibility. Two prototypes of bladed disks series have been made, which are exhibiting small but unavoidable deviations from the design intention due to manufacturing. The real blade alone frequencies have been identified within foregoing experimental investigations. Numerical modal analyses carried out for the prototypes as manufactured finally reveal that there is an additional positive contribution of random mistuning in terms of further enhancing the least aerodynamic damping ratio. Another promising and robust IM pattern is found by using generic algorithms to optimize the least aerodynamic damping ratio yielding stable conditions at any time as well. Moreover, it shows that IM combined with random mistuning also mitigates the maximum forced response at part-speed conditions.}, language = {en} } @misc{NakosBeirowZobel, author = {Nakos, Alex and Beirow, Bernd and Zobel, Arthur}, title = {Mistuning and Damping of a Radial Turbine Wheel. Part 1: Fundamental Analyses and Design of Intentional Mistuning Pattern}, series = {Journal of Engineering for Gas Turbines and Power}, volume = {144}, journal = {Journal of Engineering for Gas Turbines and Power}, number = {2}, issn = {1528-8919}, pages = {9}, abstract = {The radial turbine impeller of an exhaust turbocharger is analyzed in view of both free vibration and forced response. Due to random blade mistuning resulting from unavoidable inaccuracies in manufacture or material inhomogeneities, localized modes of vibration may arise, which involve the risk of severely magnified blade displacements and inadmissibly high-stress levels compared to the tuned counterpart. Contrary, the use of intentional mistuning (IM) has proved to be an efficient measure to mitigate the forced response. Independently, the presence of aerodynamic damping is significant with respect to limit the forced response since structural damping ratios of integrally bladed rotors typically take extremely low values. Hence, detailed knowledge of respective damping ratios would be desirable while developing a robust rotor design. For this, far-reaching experimental investigations are carried out to determine the damping of a comparative wheel within a wide pressure range by simulating operation conditions in a pressure tank. Reduced-order models are built up for designing suitable intentional mistuning patterns by using the subset of nominal system modes approach introduced by Yang and Griffin (2001, "A Reduced-Order Model of Mistuning Using a Subset of Nominal System Modes," J. Eng. Gas Turbines Power, 123(4), pp. 893-900), which conveniently allows for accounting both differing mistuning patterns and the impact of aeroelastic interaction by means of aerodynamic influence coefficients. Further, finite element analyses are carried out in order to identify appropriate measures of how to implement intentional mistuning patterns, which are featuring only two different blade designs. In detail, the impact of specific geometric modifications on blade natural frequencies is investigated. The first part of this three-part paper is focused on designing the IM pattern. The second and third part following, later on, will address the topics (i) experimental validation after implementation of the IM pattern at rest and under rotation, and (ii) the development of an approach for fast estimating damping ratios in the design phase.}, language = {en} } @incollection{BeirowGolzePopig, author = {Beirow, Bernd and Golze, Mark and Popig, Frederik}, title = {Vibration Reduction of a Steam Turbine Wheel by Means of Intentional Mistuning}, series = {Advances in Mechanism Design III}, booktitle = {Advances in Mechanism Design III}, editor = {Beran, Jaroslav and B{\´i}lek, Martin and V{\´a}clav{\´i}k, Miroslav and Žabka, Petr}, publisher = {Springer International Publishing}, address = {Heidelberg}, isbn = {978-3-030-83593-4}, issn = {2211-0984}, doi = {10.1007/978-3-030-83594-1_8}, pages = {73 -- 82}, abstract = {A last stage steam turbine wheel is analyzed with the objective to alleviate the flutter susceptibility by employing intentional mistuning (IM). In particular, the operation at nominal speed under part-load conditions may cause unfavorable flow conditions facilitating flow separation. In consequence, negative aerodynamic damping ratios occur for the first bending mode family in some circumstances. Employing intended alternate mistuning of adequate magnitude has proved to be a promising measure to stabilize rotors in terms of avoiding self-excited vibration phenomena. From the manufacturing point of view, this two-blade design is advantageous as well and hence, chosen here as a first measure to attenuate flutter susceptibility. Two prototypes of bladed disks series have been made, which are exhibiting small but unavoidable deviations from the design intention due to manufacturing. The real blade alone frequencies have been identified within foregoing experimental investigations. Numerical modal analyses carried out for the prototypes as manufactured finally reveal that there is an additional positive contribution of random mistuning in terms of further enhancing the least aerodynamic damping ratio. Another promising and robust IM pattern is found by using generic algorithms to optimize the least aerodynamic damping ratio yielding stable conditions at any time as well. Moreover, it shows that IM combined with random mistuning also mitigates the maximum forced response at part-speed conditions.}, language = {en} } @misc{GambittaKuehhornBeirowetal., author = {Gambitta, Marco and K{\"u}hhorn, Arnold and Beirow, Bernd and Schrape, Sven}, title = {Stator Blades Manufacturing Geometrical Variability in Axial Compressors and Impact on the Aeroelastic Excitation Forces}, series = {Journal of Turbomachinery}, volume = {144}, journal = {Journal of Turbomachinery}, issn = {1528-8900}, doi = {10.1115/1.4052602}, pages = {10}, abstract = {The manufacturing geometrical variability is a source of uncertainty, which cannot be avoided in the realization of machinery components. Deviations of a part geometry from its nominal design are inevitably present due to the manufacturing process. In the case of the aeroelastic forced response problem within axial compressors, these uncertainties may affect the vibration characteristics. For this reason, the impact of geometrical uncertainties due to the manufacturing process onto the modal forcing of axial compressor blades is investigated in this study. The research focuses on the vibrational behavior of an axial compressor rotor blisk. In particular, the amplitude of the forces acting as a source of excitation on the vibrating blades is studied. The geometrical variability of the upstream stator is investigated as input uncertainty. The variability is modeled starting from a series of optical surface scans. A stochastic model is created to represent the measured manufacturing geometrical deviations from the nominal model. A data reduction methodology is proposed in order to represent the uncertainty with a minimal set of variables. The manufacturing geometrical variability model allows to represent the input uncertainty and probabilistically evaluate its impact on the aeroelastic problem. An uncertainty quantification is performed in order to evaluate the resulting variability on the modal forcing acting on the vibrating rotor blades. Of particular interest is the possible rise of low engine orders due to the mistuned flow field along the annulus. A reconstruction algorithm allows the representation of the variability during one rotor revolution. The uncertainty on low harmonics of the modal rotor forcing can be therefore identified and quantified.}, language = {en} } @misc{HeinrichUnglaubeBeirowetal., author = {Heinrich, Christoph Rocky and Unglaube, Tina and Beirow, Bernd and Brillert, Dieter and Steff, Klaus and Petry, Nico}, title = {Surrogate Models for the Prediction of Damping Ratios in Coupled Acoustoelastic Rotor-Cavity Systems}, series = {Journal of Engineering for Gas Turbines and Power}, volume = {144}, journal = {Journal of Engineering for Gas Turbines and Power}, number = {8}, issn = {1528-8919}, doi = {10.1115/1.4054567}, abstract = {Centrifugal compressors are versatile machines that many industries employ for a wide range of different applications, including the production of highly compressed gases. During the last decades, comprehensive research was conducted on the impact of high-pressure operating conditions on the vibrational behavior of radial compressors. In various studies, acoustic modes building up in the side cavities were found to be a potential source of high cycle fatigue. Nowadays, it is well-known that an increase in gas pressure levels leads to a more pronounced fluid-structure interaction between the side cavities and the impeller resulting in a frequency shift of the acoustic and structural modes. In a recently published paper, the authors presented a generalized model which can predict this behavior. As it is not always possible to avoid operating close to or accelerating through a resonance, it is crucial to know the damping present within the system. Currently, only a few publications concentrate on the damping of radial impellers. Therefore, the authors present measurement data acquired from a test rig at the University of Duisburg-Essen, which reveals the damping behavior of a disk under varying operating conditions. Two surrogate models are proposed to predict the identified damping behavior. The first one is based solely on a one-dimensional piston model and the second approach uses an enhanced version of the generalized method. Finally, the measurement data is used to validate both surrogate systems.}, language = {en} } @misc{GambittaBeirowSchrape, author = {Gambitta, Marco and Beirow, Bernd and Schrape, Sven}, title = {A Digital Twin of Compressor Blisk Manufacturing Geometrical Variability for the Aeroelastic Uncertainty Quantification of the Aerodynamic Damping}, series = {Turbo Expo 2022 : Rotterdam Ahoy Convention Centre, Rotterdam, The Netherlands, Conference and Exhibition: June 13 - 17, 2022}, journal = {Turbo Expo 2022 : Rotterdam Ahoy Convention Centre, Rotterdam, The Netherlands, Conference and Exhibition: June 13 - 17, 2022}, abstract = {This study is centered on the aeroelastic problem for axial compressors blisk airfoils in presence of geometrical uncertainties. The combined problem of structural dynamics and unsteady aerodynamics is of interest for these machines due to the stress induced by the blades vibration. In this field, deviations from the nominal cyclic symmetry (in geometry, material or fluid properties) are generally referred to as mistuning. In particular, the geometrical mistuning is addressed resulting from the manufacturing process of blisk airfoils. The impact of these uncertainties on the aeroelastic problem is evaluated, focusing on the aerodynamic damping. The analysis of the manufacturing geometrical variability is approached in a probabilistic manner. A model representing the uncertainty is created starting from a dataset of optical surface scans. The measured geometries are parameterized in order to numerically describe the differences from the nominal geometry with a set of variables. The creation of a mean geometry of the measured blades allows to simplify the description of the uncertainty, which can be then modelled describing the distributions of geometrical deviations over the blade height. In order to create a stochastic model for the geometrical uncertainty, a data reduction method is implemented in the model. This aims to describe the variability within a minimum required accuracy while using a minimal set of variables. For this purpose, an Autoencoder is used to define a compressed representation of the dataset of interest. The method is based on the training of a Neural-Network, which tries to represent the identity function for the given data while forcing a variables reduction in the intermediate layers. A regularization method for the reduced variables is also introduced in order to avoid correlations and normalize the distributions. The computation of the aerodynamic damping is performed using a CFD solver. A steady-state representation of the investigated axial compressor rig is validated using available experimental data. The unsteady computations are done for one configuration at one shaft speed, which is representative of two relevant crossings in the Campbell diagram for the studied blisk. This indicates resonance conditions for two vibrational mode shapes of the component. The Aerodynamic Influence Coefficients (AIC) method is used to calculate the aerodynamic damping curve for the two vibrational mode shapes of interest. This allows to obtain the damping values over the different inter-blade phase angles with one single solution per mode shape, while reducing the domain to a sub-assembly of the investigated blisk. The Uncertainty Quantification (UQ) uses the implemented geometrical variability model and the defined solution method for the calculation of the aerodynamic damping. To describe the input uncertainty (manufacturing geometrical variability) the space of the variables resulting from the Autoencoder data reduction is used. A sampling is generated, representing with each sample a set of three mistuned blades. For each sample, the three resulting blade surfaces are inserted in the AIC setup, representing the vibrating blade as well as the relative direct upstream and downstream blades. This allows to evaluate the uncertainty on the amplitude and phase of the influence coefficients relative to the three blades and finally on the aerodynamic damping curve. The data reduction provided by the Autoencoder proved to be very efficient, especially if compared to linear methods as the principal components analysis. This allowed to include in the UQ multi-passage variations for a better representation of a real geometry. The output uncertainty on the aerodynamic damping could therefore be evaluated taking these effects in consideration. The results can be combined in an aeroelastic reduced order model with the mistuning of the mechanical properties of the component to represent the mistuned blades vibrations.}, language = {en} } @misc{RepetckiiVinhBeirow, author = {Repetckii, Oleg V. and Vinh, Nguyen Van and Beirow, Bernd}, title = {Sensitivity Analysis Regarding the Impact of Intentional Mistuning on Blisk Vibrations}, series = {Mechanisms and Machine Science}, volume = {125}, journal = {Mechanisms and Machine Science}, publisher = {Springer}, address = {Cham}, issn = {2211-0992}, doi = {10.1007/978-3-031-15758-5_41}, pages = {408 -- 415}, abstract = {The effect of different intentional mistuning (IM) patterns is investigated with respect to the forced response of an academic axial blisk. It could be shown in numerical analyses that a preliminary use of sensitivity algorithms helps to understand the feasibility and efficiency of introducing geometric changes of the blades. The implementation of IM patterns requires conducting intensive sensitivity studies based on FE simulations in order to identify the consequences of slight geometrical blade modifications on natural frequencies. Typical changes might be a modification of fillet radii or partial modifications of blade thickness, which are most suitable to adjust a target natural frequency without a severe loss of aerodynamic performance. A software tool developed at Irkutsk SAU is employed to evaluate the impact of mass and stiffness contributions, and with that, geometric deviations on blade natural frequencies. Intensive blade vibration due to aerodynamic excitation of blisks is known as major source of high cycle fatigue, which may cause severe failures of turbine and compressor wheels during operation. The problem is relevant for several sectors of industry such as power generation, aviation or vehicle manufacturing. In consequence, there is a broad request of preventing any inadmissible vibration at any time. The application of IM can be regarded as powerful tool to avoid both, large forced responses and self-excited vibration. However, there is a lack of knowledge about how to implement mistuning without strong distortions of the flow passage. The main objective of this work is to close this gap based on comprehensive numerical analyses with regard to the effects of intended geometric modifications of blades on modal quantities. Using FE models, the effectiveness of the proposed block models of mistuning is analyzed with and without taking into account the operational speed of the axial impeller. In conclusion, the consequences of different IM implementations on the forced response of an academic blisk are discussed. In particular, the most promising IM patterns are identified yielding the least forced response.}, language = {en} } @misc{NakosBeirowZobel, author = {Nakos, Alex and Beirow, Bernd and Zobel, Arthur}, title = {Mistuning and Damping of a Radial Turbine Wheel. Part 2: Implementation and Validation of Intentional Mistuning}, series = {ASME 2022 Turbomachinery Technical Conference \& Exposition (GT2022)}, journal = {ASME 2022 Turbomachinery Technical Conference \& Exposition (GT2022)}, abstract = {A radial turbine impeller of an exhaust turbocharger is analyzed in view of both free vibration and forced response. Due to random blade mistuning resulting from unavoidable inaccuracies in manufacture or material inhomogeneities, localized modes of vibration may arise, which involve the risk of severely magnified blade displacements and inadmissibly high stress levels compared to the tuned counterpart. Contrary, the use of intentional mistuning (IM) has proved to be an efficient measure to mitigate the forced response. In part one of this three-part paper fundamental analyses have been carried out to find a suitable intentional mistuning pattern which is featuring only two different blade designs [1]. This part is focused on the implementation and validation of the intentional mistuning pattern and discusses the detailed geometric adaption of the turbine wheel hardware. The final design of the geometric adaption is developed in terms of manufacturability and efficiency so that a reliable and robust solution is presented. Its machined adaption is validated by both vibration testing at rest and optical measurements so that manufacturing deviations are detected and their impacts discussed and evaluated. Reduced order models are built up for checking the effect of the implemented intentional mistuning pattern on the forced response by using the subset of nominal system modes (SNM) approach introduced by Yang and Griffin [2], which conveniently allows for accounting both the design intention of the mistuning pattern and the actually machined implementation due to manufacturing deviations.}, language = {en} } @misc{BeirowGolzePopig, author = {Beirow, Bernd and Golze, Mark and Popig, Frederik}, title = {Application of Intentional Mistuning to Reduce the Vibration Susceptibility of a Steam Turbine Wheel}, series = {ASME 2022 Turbomachinery Technical Conference \& Exposition (GT2022)}, journal = {ASME 2022 Turbomachinery Technical Conference \& Exposition (GT2022)}, abstract = {Intentional mistuning (IM) is employed on a last stage turbine wheel to alleviate both the flutter susceptibility and maximum forced response. Primarily, operations at nominal speed under part-load conditions may cause unfavorable flow conditions facilitating flow separation. As a consequence, the original design intention with identical blades features negative aerodynamic damping ratios with respect to the first bending mode family. In order to prevent any self-excited vibration phenomena, intentional alternate mistuning is utilized to increase the least aerodynamic damping ratio as far as it takes a positive value and hence, to contribute to a stabilization of the rotor. For the purpose of numerically analyzing the vibration behavior, reduced order models are built up, which are based on modal reduction techniques, namely the subset of nominal system modes (SNM) [1] and the fundamental mistuning model (FMM) [2]. These types of models conveniently allow for considering both, different mistuning distributions in terms of probabilistic analyses and the aeroelastic interaction by means of prescribing aerodynamic damping ratios and aeroelastic natural frequencies of the tuned counterpart or aerodynamic influence coefficients, respectively. A detailed study is presented regarding the correction of frequency mistuning magnitudes in terms of considering the impact of centrifugal stiffening, which plays a significant role in case of long low pressure turbine blades featuring high aspect ratios. Since alternate IM cannot be implemented perfectly, every bladed wheel as manufactured will exhibit small but unavoidable structural deviations from the design intention, which are known as random mistuning. To ensure the robustness of the IM solution in terms of positive aerodynamic damping ratios at any time, comprehensive probabilistic analyses are conducted with respect to superimposing random structural mistuning at first. Secondly, the impact of varying mistuning magnitude is analyzed. Thirdly, the robustness towards aerodynamic mistuning is investigated by means of small variations of aeroelastic influence coefficients and consequently, the inter blade phase angle dependent aerodynamic damping curves. Moreover, it becomes apparent that alternate IM superimposed with both, random structural and aerodynamic mistuning also mitigates the maximum forced response at part-speed conditions.}, language = {en} } @misc{YangBeirowGiersch, author = {Yang, Jingjie and Beirow, Bernd and Giersch, Thomas}, title = {Simulation and Investigation of an Intentionally Mistuned Blisk Rotor in a High Pressure Compressor}, series = {ASME 2022 Turbomachinery Technical Conference \& Exposition (GT2022)}, journal = {ASME 2022 Turbomachinery Technical Conference \& Exposition (GT2022)}, abstract = {In modern aircraft engines, blade integrated disk (blisk) is widely implemented. While blisk rotor design brings numerous advantages including weight reduction, aerodynamic efficiency improvement, and manufacturing simplification, its low mechanical damping due to the absence of friction between disk and blades makes the rotor more susceptible to vibration. Given that damage to blisk rotor sometimes requires the whole assembly to be replaced, effort has been made to alleviate the unexpected vibration amplitude within operating range, among which intentional mistuning is regarded as one of the commonly used technique. Mistuning refers to blade-to-blade deviation of mechanical properties, which is inevitable in practice due to manufacturing tolerances or wear. Through the application of intentional mistuning, it is expected that the amplitude of synchronous or nonsynchronous vibration (NSV) will be reduced without severely losing aerodynamic performance. In this paper, the effect of intentional mistuning has been investigated for the blisk rotor of a 1.5-stage transonic research compressor at Technical University of Darmstadt. According to the previous test campaign, the baseline rotor has shown its susceptibility to NSV due to first torsion mode in the near stall region. The rotor was then intentionally mistuned. Subsequent tests have proven a successful suppression of flutter problem. In order to have a comprehensive understanding of the effect of the applied mistuning pattern, simulations are performed using a FVM based CFD solver to produce comparable results as shown in the test campaign. In the simulation, mistuned systems are modelled in comparison with the nominal tuned reference. Geometrical disturbance and frequency disturbance are introduced to the tuned model first separately and then simultaneously. In this way, contribution of aerodynamic and structural mistuning to the suppression of NSV is identified based on the CFD results. Later, system eigenvalues of the mistuned aeromechanical model are determined by making use of the blade individual response in time domain. The obtained results are compared with mistuned eigenvalues calculated by a reduced order model (ROM), which utilizes the idea of subset of nominal modes (SNM). This makes it possible to demonstrate the feasibility of using SNM to carry out stability analysis when designing mistuning pattern for vibration of NSV type. It also allows a compare between the linear structural model of the SNM and the non-linear aeromechanic model of the CFD solver on capturing the non-linear nature of the flow, especially in the context of NSV.}, language = {en} } @misc{NakosBeirowZobel, author = {Nakos, Alex and Beirow, Bernd and Zobel, Arthur}, title = {Vibration Analyses of Radial Turbine Wheels Considering Structural and Aerodynamic Mistuning}, series = {Proceedings of Global Power and Propulsion Society}, journal = {Proceedings of Global Power and Propulsion Society}, issn = {2504-4400}, doi = {10.33737/gpps22-tc-61}, pages = {9}, abstract = {Radial turbine wheels of exhaust gas turbochargers are permanently exposed to centrifugal, thermal, and aerodynamic loading. However, since these wheels are commonly designed as integral structures featuring relatively little mechanical damping, they are prone to the impact of unavoidable structural random mistuning, which may evoke severe magnifications of the forced response. Nonetheless, the safe operation of turbochargers has to be ensured at any time so that the contribution of aerodynamic damping is of particular importance. Moreover, the application of intentional mistuning is known to be a suitable measure to limit or even reduce the forced response by means of increasing the resulting aerodynamic damping. In this paper, two turbine wheels of the same type are considered, one manufactured with and another one without intentional mistuning. Experimental determinations of the mistuning patterns actually reveal deviations from the design intentions, which are considered in updated numerical models. Forced response simulations demonstrate that the targeted response reduction affected by intentional mistuning is achieved anyhow. Furthermore, the general robustness of the solution is proved with respect to the maximum forced response by means of comprehensive probabilistic numerical analyses addressing the impact of additional random structural mistuning, the magnitude of intentional mistuning, and aerodynamic mistuning.}, language = {en} } @misc{KoberBeirowSingh, author = {Kober, Markus and Beirow, Bernd and Singh, Kai Navtej}, title = {Towards the Isogeometric Aero-Engine}, series = {Proceedings of 16th German LS-DYNA Forum, 11.-12. Oktober 2022, Bamberg}, journal = {Proceedings of 16th German LS-DYNA Forum, 11.-12. Oktober 2022, Bamberg}, isbn = {978-3-9816215-8-7}, language = {en} } @misc{NakosBeirowWirsumetal., author = {Nakos, Alex and Beirow, Bernd and Wirsum, Manfred and Schafferus, Markus and Sasakaros, Marios and Vogt, Damian and Zobel, Arthur}, title = {Mistuning and Damping of a Radial Turbine Wheel. Part 3: Validation of Intentional Mistuning During Machine Operation}, series = {Proceedings of ASME Turbo Expo 2023, Boston, Massachusetts, June 26-30, 2023}, journal = {Proceedings of ASME Turbo Expo 2023, Boston, Massachusetts, June 26-30, 2023}, isbn = {978-0-7918-8706-6}, doi = {10.1115/GT2023-101993}, abstract = {This contribution investigates the implementation and verification of intentional mistuning (IM) to a radial turbine wheel of an exhaust turbocharger. In principle, inaccuracies in manufacture or material inhomogeneities may lead to random blade mistuning and thus localized modes with severely magnified blade vibrations can occur. With regard to axial compressors and turbines, IM has proved to be an efficient measure to mitigate the forced response. For radial turbine wheels, on the other hand, a successful implementation of IM into a wheel hardware has not yet been presented. This work aims at the design, implementation, and verification of successful IM considering both measurements at standstill and test runs on a turbocharger test rig. The fundamental analyses have been carried out in part one [1] of this three-part paper in order to find a suitable IM-pattern featuring only two different blade designs. The AABB sequence was identified to be the most promising one in terms of mitigating the maximum forced response of the fundamental bending mode at the considered operating point. In concrete terms, a 40\% attenuation of the maximum forced response was predicted by employing reduced order models. The second part [2] discussed the detailed geometric adaption of the turbine wheel hardware focussing on the implementation and validation of the IM pattern under laboratory conditions (standstill). Part three is about validating the efficacy of IM under operating conditions. In that sense, the successful implementation of IM and thus the machining of the wheel hardware are investigated within the framework of test runs on a turbocharger test rig. Test runs are conducted for both a wheel with and a wheel without IM. Non-intrusive blade-tip-timing (BTT) technology is employed to record forced response data. A well-known approach to evaluate the raw data namely times of arrival (TOA) without the availability of a once-per-revolution (OPR) signal is adapted, implemented, and applied for the evaluation. The results are compared to those received by using a commercial evaluation software for BTT measurement data. Finally, the actual gain achieved by means of IM is discussed in detail.}, language = {en} } @misc{GambittaBeirowKlauke, author = {Gambitta, Marco and Beirow, Bernd and Klauke, Thomas}, title = {Investigation of Rear Blisk Drum Dynamics Under Consideration of Multi-Stage Coupling}, series = {Proceedings of ASME Turbo Expo 2023, Boston, Massachusetts, June 26-30, 2023}, journal = {Proceedings of ASME Turbo Expo 2023, Boston, Massachusetts, June 26-30, 2023}, isbn = {978-0-7918-8705-9}, doi = {10.1115/GT2023-103756}, abstract = {The analysis of the structural dynamics of multistage cyclic structures as linked components is required to model the interstage coupling. In turbomachinery, this can result in a collaboration between different compressor or turbine stages. This paper investigates the coupling between two rear drum blade integrated disk stages of an axial compressor to support the mechanical design process. Considering the vibration modeshapes of a multistage system, different components may co-participate in the dynamics. For this reason, a criteria to identify the modes affected by the coupling and to quantify this coupling is defined. This allows to distinguish between modes with inter-stage coupling, requiring the multistage system for their description, and uncoupled modes, involving a single stage. In addition, it is of interest to research methods to reduce the impact of the coupling on the vibrating system without drastically altering the geometry of the components. The vibration analyses of a two-stage compressor generalized geometry, representative of a compressor rear drum blisk, is presented as a study case. The use of a reducing method allows to describe the behavior of the nominal multistage system with a computationally efficient technique, enabling a parametric analysis of the stages' coupling. The investigation considers the effect of a set of geometrical and mechanical parameters on the dynamics, identifying the driving parameters of the coupled vibration characteristics.}, language = {en} } @misc{NakosBeirow, author = {Nakos, Alex and Beirow, Bernd}, title = {On the Influence of Installation on the Forced Response of Radial Turbine Wheels}, series = {Proceedings of Global Power and Propulsion Society, GPPS Hongkong, October 16 - 19, 2023}, journal = {Proceedings of Global Power and Propulsion Society, GPPS Hongkong, October 16 - 19, 2023}, issn = {2504-4400}, doi = {10.33737/gpps23-tc-138}, pages = {10}, abstract = {Radial turbine wheels are commonly designed as integrally bladed rotors featuring extremely low structural damping in comparison to separate designs of blades and disk. Consequently, they are more prone to vibration. Moreover, random blade mistuning due to unavoidable inaccuracies in manufacture or material inhomogeneities can severely increase the maximum forced blade vibration amplitude compared to the tuned counterpart. Unfortunately, this response magnification may worsen in case of small damping. Since modes exhibiting blade dominated vibration are usually considered vulnerable in this regard, the influence of disk and shaft and its mounting conditions seems to be negligible. In this paper, reduced order models are employed in order to simulate the forced response of a radial turbine wheel. Experimental modal analyses have been carried out to provide realistic damping ratios considering both the single turbine wheel hardware as well as the full rotor mounted in a turbocharger test rig. Test runs are conducted and non-intrusive blade-tip-timing technology provides measurement data to validate the simulation models. Contrary to the original presumption, it is shown that additional structural damping contributed by assembling can significantly influence the forced response even though the focus is on blade dominated vibration.}, language = {en} } @misc{GambittaBeirowSchrape, author = {Gambitta, Marco and Beirow, Bernd and Schrape, Sven}, title = {Modelling Method for Aeroelastic Low Engine Order Excitation Originating from Upstream Vanes' Geometrical Variability}, series = {International Journal of Turbomachinery Propulsion and Power}, volume = {9}, journal = {International Journal of Turbomachinery Propulsion and Power}, number = {2}, issn = {2504-186X}, doi = {10.3390/ijtpp9020012}, abstract = {The manufacturing geometrical variability in axial compressors is a stochastic source of uncertainty, implying that the real geometry differs from the nominal design. This causes the real geometry to lose the ideal axial symmetry. Considering the aerofoils of a stator vane, the geometrical variability affects the flow traversing it. This impacts the downstream rotor, especially when considering the aeroelastic excitation forces. Optical surface scans coupled with a parametrisation method allow for acquiring the information relative to the real aerofoils geometries. The measured data are included in a multi-passage and multi-stage CFD setup to represent the mistuned flow. In particular, low excitation harmonics on the rotor vane are introduced due to the geometrical deviations of the upstream stator. The introduced low engine orders, as well as their amplitude, depend on the stator geometries and their order. A method is proposed to represent the phenomena in a reduced CFD domain, limiting the size and number of solutions required to probabilistically describe the rotor excitation forces. The resulting rotor excitation forces are reconstructed as a superposition of disturbances due to individual stator aerofoils geometries. This indicates that the problem is linear in the combination of disturbances from single passages.}, language = {en} } @misc{GambittaBeirowSchrape, author = {Gambitta, Marco and Beirow, Bernd and Schrape, Sven}, title = {Modelling method for aeroelastic low engine order excitation originating from upstream Vanes' geometrical variability}, series = {International Journal of Turbomachinery Propulsion and Power}, volume = {2024}, journal = {International Journal of Turbomachinery Propulsion and Power}, issn = {2504-186X}, pages = {16}, abstract = {The manufacturing geometrical variability in axial compressors is a stochastic source of uncertainty, implying that the real geometry differs from the nominal design. This causes the real geometry to lose the ideal axial symmetry. Considering the aerofoils of a stator vane, the geometrical variability affects the flow traversing it. This impacts the downstream rotor, especially when considering the aeroelastic excitation forces. Optical surface scans coupled with a parametrisation method allow for acquiring the information relative to the real aerofoils geometries. The measured data are included in a multi-passage and multi-stage CFD setup to represent the mistuned flow. In particular, low excitation harmonics on the rotor vane are introduced due to the geometrical deviations of the upstream stator. The introduced low engine orders, as well as their amplitude, depend on the stator geometries and their order. A method is proposed to represent the phenomena in a reduced CFD domain, limiting the size and number of solutions required to probabilistically describe the rotor excitation forces. The resulting rotor excitation forces are reconstructed as a superposition of disturbances due to individual stator aerofoils geometries. This indicates that the problem is linear in the combination of disturbances from single passages.}, language = {en} } @misc{SasakarosSchafferusWirsumetal., author = {Sasakaros, Marios and Schafferus, Markus and Wirsum, Manfred and Zobel, Arthur and Vogt, Damian and Nakos, Alex and Beirow, Bernd}, title = {Experimental Investigation of Synchronous-Flow-Induced Blade Vibrations on a Radial Turbine}, series = {International Journal of Turbomachinery, Propulsion and Power}, volume = {9}, journal = {International Journal of Turbomachinery, Propulsion and Power}, number = {4}, publisher = {MDPI AG}, issn = {2504-186X}, doi = {10.3390/ijtpp9040035}, pages = {30}, abstract = {In this study, a thorough experimental investigation of the synchronous blade vibrations of a radial turbine is performed for different IGV configurations. First, the blade modes are measured experimentally and calculated numerically. Subsequently, the vibrations are recorded with two redundant measurement systems during real operation. Strain gauges were applied on certain blades, while a commercial blade-tip-timing system is used for the measurement of blade deflections. The experimentally determined vibration properties are compared with numerical estimations. Initially, the vibrations recorded with the "nominal" IGV were presented. This IGV primarily generates nodal diameter (ND) 0 vibrations. Subsequently, the impact of two different IGV configurations is examined. First, a mistuned IGV, which has the same number of vanes as the "nominal" IGV is examined. By intentionally varying the distance between the vanes, additional low engine order excitations are generated. Moreover, an IGV with a higher number of vanes is employed to induce excitations at higher frequency modes and ND6 vibrations. Certain vibrations are consistently measured across all IGV configurations, which cannot be attributed to the spiral turbine casing. In addition, a turbine-compressor interaction has been observed.}, language = {en} } @misc{GambittaBeirowKlauke, author = {Gambitta, Marco and Beirow, Bernd and Klauke, Thomas}, title = {Structural dynamics of an axial compressor's rear blisk drum and multi-stage coupling}, series = {ASME Turbo Expo 2024: Turbomachinery Technical Conference and Exposition, June 24-28, 2024, London, United Kingdom}, journal = {ASME Turbo Expo 2024: Turbomachinery Technical Conference and Exposition, June 24-28, 2024, London, United Kingdom}, isbn = {978-0-7918-8803-2}, doi = {10.1115/GT2024-128647}, language = {en} } @misc{BeirowNakosGolzeetal., author = {Beirow, Bernd and Nakos, Alex and Golze, Mark and Vogt, Damian and Wirsum, Manfred and Schafferus, Markus and Sasakaros, Marios}, title = {Forced response reduction of a turbine impeller}, series = {Advances in Mechanism Design IV, Proceedings of TMM 2024}, journal = {Advances in Mechanism Design IV, Proceedings of TMM 2024}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-70253-2}, issn = {2211-0984}, doi = {10.1007/978-3-031-70251-8_6}, pages = {53 -- 65}, language = {en} }