@misc{PetkovBakalovaObrosovetal., author = {Petkov, Nikolay and Bakalova, Totka and Obrosov, Aleksei and Kashkarov, Egor B. and Kormunda, Martin and Kejzlar, Pavel and Bahchedzhiev, Hristo and Dadourek, Karel and Weiß, Sabine}, title = {Structural, mechanical, and tribological properties of CrCN coatings obtained by cathodic arc physical vapour deposition technology at different CH4/N2 gas ratio}, series = {Thin Solid Films}, volume = {766}, journal = {Thin Solid Films}, issn = {1879-2731}, doi = {10.1016/j.tsf.2022.139669}, abstract = {Chromium carbonitride coatings were deposited by cathodic arc physical vapor deposition technology at a temperature of 300 °C, as were used the reactive gasses CH4 and N2. The structural analysis of the CrN coating showed a polycrystalline structure with mixed CrN and Cr2N phases. All studied coatings, including the CrC exhibits fcc structure. The phases were confirmed by X-ray photoelectron spectroscopy measurements where a surface oxidation was also detected. The increase of the CH4 gas flow during the deposition process leads to a parabolic trend with the highest hardness of 33.5 GPa for the coating deposited at CH4 / N2 = 0.53. At the same time the lowest coefficient of friction for both counterparts Al2O3 and ZrO2 (0.28 and 0.26, respectively) were measured at CH4 / N2 = 1.86. The tribological tests reveal that the wear of the coatings increases with an increasing CH4 flow rate, whereas the coefficient of friction decreases. This observed contradiction is explained by a phenomenon described as the effect of Rebinder.}, language = {en} } @misc{PetkovKashkarovObrosovetal., author = {Petkov, Nikolay and Kashkarov, Egor B. and Obrosov, Aleksei and Bakalova, Totka and Kejzlar, Pavel and Bahchedzhiev, Hristo}, title = {Influence of Bias Voltage and CH4/N2 Gas Ratio on the Structure and Mechanical Properties of TiCN Coatings Deposited by Cathodic Arc Deposition Method}, series = {Journal of Materials Engineering and Performance}, volume = {28}, journal = {Journal of Materials Engineering and Performance}, number = {1}, issn = {1544-1024}, doi = {10.1007/s11665-018-3754-3}, pages = {343 -- 354}, abstract = {This article presents a study of the influence of the bias voltage and CH4/N2 gas ratio on the structure and mechanical properties of TiCN coatings. The coatings are deposited by cathodic arc deposition technology from Ti cathodes under an atmosphere of a mixture of CH4 and N2 gasses. XRD analysis shows that an increase in the methane flow changes the preferential orientation of the coating from (111) to (200) and results in a refinement of the structure (grain size reduction from 23 to 7 nm). SEM analysis shows that the coatings are stoichiometric. It was demonstrated that the bias voltage has an influence on the grain size, hardness and elasticity module. The highest hardness value of 52.5 GPa was measured at the coatings lacking a clear preferential orientation. The adhesion of the coatings showed a critical load in the range of 29-64 N.}, language = {en} }