@inproceedings{HoehnischKuehhornBeirow, author = {H{\"o}hnisch, Peter and K{\"u}hhorn, Arnold and Beirow, Bernd}, title = {Experimental and Numerical Analysis of Radial Turbine Bliks with Regard to Mistuning}, language = {en} } @misc{HeinrichKuehhornSteffetal., author = {Heinrich, Christoph Rocky and K{\"u}hhorn, Arnold and Steff, Klaus and Petry, Nico}, title = {Generalized Model for the Approximation of Coupled Acousto-Mechanical Natural Frequencies in High-Pressure Centrifugal Compressors}, series = {Journal of Engineering for Gas Turbines and Power}, journal = {Journal of Engineering for Gas Turbines and Power}, issn = {1528-8919}, doi = {10.1115/1.4049447}, pages = {27}, abstract = {The oil and gas, chemical, and process industries employ centrifugal compressors for a wide range of applications. Due to this, the conditions under which centrifugal compressors have to operate, vary significantly from case to case. Gas pipeline compressors, for example, may feature discharge pressures well over 100 bar. During the last decades, comprehensive research was conducted on the impact of high pressure operating conditions on the vibrational behavior of centrifugal compressors. Nowadays, it is well-known that an increase in gas pressure levels leads to a more pronounced interaction between the side cavities and the impeller, which results in a frequency shift of the acoustic and structural modes. For the safe operation of compressors, it is necessary to predict these coupled natural frequencies accurately. The state-of-the-art approach to achieve this objective is the finite element method. While this technique provides high-quality results, it incurs high computational costs and is, therefore, time-consuming. The authors of the current paper propose a generalized model to overcome this challenge. It uses the uncoupled modes of the impeller and side cavities in a modal superposition to approximate the coupled system's natural frequencies. In this way, the intended design geometries are considered while reducing the computational effort significantly. In a numerical study, the generalized model is applied to different systems of increasing complexity, and the results are compared to a finite element analysis. Finally, the paper concludes with a discussion of the limitations and benefits of all employed numerical methods.}, language = {en} } @inproceedings{KuehhornBeirowStrehlau, author = {K{\"u}hhorn, Arnold and Beirow, Bernd and Strehlau, Ulrik}, title = {Zum Schwingungsverhalten integraler Hochdruckverdichterlaufr{\"a}der}, language = {de} } @misc{GambittaKuehhornBeirowetal., author = {Gambitta, Marco and K{\"u}hhorn, Arnold and Beirow, Bernd and Schrape, Sven}, title = {Stator Blades Manufacturing Geometrical Variability in Axial Compressors and Impact on the Aeroelastic Excitation Forces}, series = {Journal of Turbomachinery}, volume = {144}, journal = {Journal of Turbomachinery}, issn = {1528-8900}, doi = {10.1115/1.4052602}, pages = {10}, abstract = {The manufacturing geometrical variability is a source of uncertainty, which cannot be avoided in the realization of machinery components. Deviations of a part geometry from its nominal design are inevitably present due to the manufacturing process. In the case of the aeroelastic forced response problem within axial compressors, these uncertainties may affect the vibration characteristics. For this reason, the impact of geometrical uncertainties due to the manufacturing process onto the modal forcing of axial compressor blades is investigated in this study. The research focuses on the vibrational behavior of an axial compressor rotor blisk. In particular, the amplitude of the forces acting as a source of excitation on the vibrating blades is studied. The geometrical variability of the upstream stator is investigated as input uncertainty. The variability is modeled starting from a series of optical surface scans. A stochastic model is created to represent the measured manufacturing geometrical deviations from the nominal model. A data reduction methodology is proposed in order to represent the uncertainty with a minimal set of variables. The manufacturing geometrical variability model allows to represent the input uncertainty and probabilistically evaluate its impact on the aeroelastic problem. An uncertainty quantification is performed in order to evaluate the resulting variability on the modal forcing acting on the vibrating rotor blades. Of particular interest is the possible rise of low engine orders due to the mistuned flow field along the annulus. A reconstruction algorithm allows the representation of the variability during one rotor revolution. The uncertainty on low harmonics of the modal rotor forcing can be therefore identified and quantified.}, language = {en} } @inproceedings{SpringmannKuehhornRaueretal., author = {Springmann, Marcel and K{\"u}hhorn, Arnold and Rauer, Georg and Giersch, Thomas}, title = {Constitutive Modelling of Plastic and Creep Behavior of the Nickel Base Superalloy ALLVAC® 718PLUS® under Heat Treatment Conditions}, language = {en} } @inproceedings{HoenischKuehhorn, author = {H{\"o}nisch, Peter and K{\"u}hhorn, Arnold}, title = {Mistuning und D{\"a}mpfung von Radialturbinen}, language = {de} } @misc{HanschkeKuehhornSchrapeetal., author = {Hanschke, Benjamin and K{\"u}hhorn, Arnold and Schrape, Sven and Giersch, Thomas}, title = {Consequences of Borescope Blending Repairs on Modern HPC Blisk Aeroelasticity}, series = {Journal of Turbomachinery}, volume = {141}, journal = {Journal of Turbomachinery}, number = {2}, issn = {1528-8900}, doi = {10.1115/1.4041672}, pages = {7}, abstract = {Objective of this paper is to analyze the consequences of borescope blending repairs on the aeroelastic behavior of a modern high pressure compressor (HPC) blisk. To investigate the blending consequences in terms of aerodynamic damping and forcing changes, a generic blending of a rotor blade is modeled. Steady-state flow parameters like total pressure ratio, polytropic efficiency, and the loss coefficient are compared. Furthermore, aerodynamic damping is computed utilizing the aerodynamic influence coefficient (AIC) approach for both geometries. Results are confirmed by single passage flutter (SPF) simulations for specific interblade phase angles (IBPA) of interest. Finally, a unidirectional forced response analysis for the nominal and the blended rotor is conducted to determine the aerodynamic force exciting the blade motion. The frequency content as well as the forcing amplitudes is obtained from Fourier transformation of the forcing signal. As a result of the present analysis, the change of the blade vibration amplitude is computed.}, language = {en} } @inproceedings{KuehhornBeirowParchemetal., author = {K{\"u}hhorn, Arnold and Beirow, Bernd and Parchem, Roland and Klauke, Thomas}, title = {Schaufelschwingungen bei realen Verdichter-Integralr{\"a}dern (BLISK)}, series = {Deutscher Luft- und Raumfahrtkongress 2006, Braunschweig, 06. bis 09. November 2006, Bd. 2}, booktitle = {Deutscher Luft- und Raumfahrtkongress 2006, Braunschweig, 06. bis 09. November 2006, Bd. 2}, publisher = {Dt. Ges. f{\"u}r Luft- und Raumfahrt}, address = {Bonn}, pages = {1199 -- 1208}, language = {de} } @misc{GambittaKuehhornBeirowetal., author = {Gambitta, Marco and K{\"u}hhorn, Arnold and Beirow, Bernd and Schrape, Sven}, title = {Stator Blades Manufacturing Geometrical Variability in Axial Compressors and Impact on the Aeroelastic Excitation Forces}, series = {Proceedings of ASME Turbo Expo 2021, ASME Paper Number: GT2021-59642}, journal = {Proceedings of ASME Turbo Expo 2021, ASME Paper Number: GT2021-59642}, abstract = {The manufacturing geometrical variability is a source of uncertainty, which cannot be avoided in the realization of a machinery. Deviations of a component geometry from its nominal design are inevitably present due to the manufacturing process. In the case of the aeroelastic forced response problem within axial compressors, these uncertainties may affect the vibration characteristics. For this reason, the impact of geometrical uncertainties due to the manufacturing process onto the modal forcing of axial compressor blades is investigated in this study. The research focuses on the vibrational behavior of an axial compressor rotor blisk (blade-integrated disk) and in particular the amplitude of the forces acting as source of excitation on the vibrating blades (modal forcing). Within this context, the geometry of the upstream stator plays an important role as in general the main harmonics of the rotor excitation forces are produced by its wake. Therefore, small variations of the upstream stators geometries, such as the ones caused by the manufacturing process, may affect the resulting forcing. In particular, the geometrical variability of the upstream stator implies that the hypothesis of a cyclic-symmetrical flow is no longer valid. This may cause the introduction of lower harmonic components in the modal forces, generally referred to as Low Engine Orders (LEO). The geometrical variability is modelled starting from a series of optical surface scans. A set of optical measurements of manufactured stator blades originating from the same nominal design constitutes the baseline dataset on which the geometrical model is built. The measured blades as well as the relative nominal geometry are parametrized to describe the individual blades surfaces. The parameterization is accomplished by slicing the surfaces in radial sections and describing each of these with a set of NACA-like parameters [1]. The measured geometrical deviations from the nominal model can therefore be described as an offset of such parameters. A reduced representation of the variables representing the input uncertainty (noise variables) is obtained via Principal Components Analysis. Afterwards a sampling on the reduced noise variables domain can be done to represent the modelled uncertainty and perform an Uncertainty Quantification (UQ) on the relative quantities of interest, in this case the modal forcing. The computation of the modal forcing is done through a CFD solver, computing the unsteady flow field around the rotor blades. The domain considered in this case is a 1.5 stage of the axial compressor, including the rotor and the up- and down-stream stators. The solutions are initialized from a validated steady state solution of the considered compressor rig. The time-dependent pressure field calculated on the rotor blades is projected onto the relative vibrational mode shapes of interests (from structural modal analyzes). The resulting forces are analyzed by means of their spectrum, evaluating the amplitudes for the present engine orders (higher harmonics of the shaft mechanical speed). The UQ uses Monte Carlo methods to evaluate the impact of the geometrical variability onto the modal forcing. The modelled uncertainty on the geometries is introduced into the CFD solver to compute the deviations on the quantities of interest. A reconstruction of the forces acting on the rotor during one revolution is obtained. This allows to evaluate the uncertainty on the present engine orders as well as the possible rise of LEO for the rotor blades in presence of a mistuned upstream stator. [1]: Lange A., Vogeler K., G{\"u}mmer V., Schrapp H. and Clemen C. (2009). "Introduction of a Parameter Based Compressor Blade Model for Considering Measured Geometry Uncertainties in Numerical Simulation." Proceedings of ASME Turbo Expo. GT2009-59937}, language = {en} } @inproceedings{NipkauKuehhornSchrape, author = {Nipkau, Jens and K{\"u}hhorn, Arnold and Schrape, S.}, title = {Determination of Aeroelastic Parameters of a High-Pressure-Compressor Stage using Fluid-Structure Interaction Calculations}, series = {Seminar: Simulation of Complex Flows (CFD), applications and trends, 10th - 11th March 2008, Wiesbaden, Germany}, booktitle = {Seminar: Simulation of Complex Flows (CFD), applications and trends, 10th - 11th March 2008, Wiesbaden, Germany}, publisher = {NAFEMS Contact DACH \& Nordic Countries}, address = {Bernau am Chiemsee}, isbn = {978-1-87437-633-0}, language = {en} } @misc{NaveedKuehhorn, author = {Naveed, Zishan and K{\"u}hhorn, Arnold}, title = {An Isogeometric Based Study of Contact Behaviour for Rotating Structures}, series = {14th World Congress on Computational Mechanics (WCCM)-ECCOMAS Congress 2020, Virtual Conference: 11-15 January 2021}, journal = {14th World Congress on Computational Mechanics (WCCM)-ECCOMAS Congress 2020, Virtual Conference: 11-15 January 2021}, language = {en} } @incollection{SchrapeKuehhornGolze, author = {Schrape, S. and K{\"u}hhorn, Arnold and Golze, Mark}, title = {Simulation fluidged{\"a}mpfter Strukturschwingungen durch partitionierte Fluid-Struktur-Kopplung mittels MpCCI}, language = {de} } @article{SchrapeKuehhornGolze, author = {Schrape, S. and K{\"u}hhorn, Arnold and Golze, Mark}, title = {Simulation fluidged{\"a}mpfter Strukturschwingungen mittels partitioniertem Kopplungssatz via MpCCI}, series = {NAFEMS-Magazin}, volume = {2}, journal = {NAFEMS-Magazin}, number = {4}, pages = {41 -- 49}, language = {de} } @incollection{SchrapeKuehhornGolze, author = {Schrape, S. and K{\"u}hhorn, Arnold and Golze, Mark}, title = {Simulation of fluid damped structural vibrations}, series = {Proceedings, 7th MpCCI User Forum, February 21st and 22nd 2006, at Schloss Birlinghoven, Sankt Augustin, Germany}, booktitle = {Proceedings, 7th MpCCI User Forum, February 21st and 22nd 2006, at Schloss Birlinghoven, Sankt Augustin, Germany}, address = {Sankt Augustin}, pages = {112 -- 121}, language = {en} } @incollection{StrehlauKuehhorn, author = {Strehlau, Ulrik and K{\"u}hhorn, Arnold}, title = {Experimental and numerical investigations of HPC blisks with a focus on travelling waves}, series = {Proceedings of the ASME Turbo Expo 2010, presented at the 2010 ASME Turbo Expo, June 14 - 18, 2010, Glasgow, UK, Volume 6, part B}, booktitle = {Proceedings of the ASME Turbo Expo 2010, presented at the 2010 ASME Turbo Expo, June 14 - 18, 2010, Glasgow, UK, Volume 6, part B}, publisher = {ASME}, address = {New York, NY}, isbn = {978-0-7918-4401-4}, pages = {865 -- 878}, language = {en} } @misc{MaywaldBeirowKuehhorn, author = {Maywald, Thomas and Beirow, Bernd and K{\"u}hhorn, Arnold}, title = {Mistuning und D{\"a}mpfung von Radialturbinenr{\"a}dern}, series = {MTZ - Motortechnische Zeitschrift}, volume = {76}, journal = {MTZ - Motortechnische Zeitschrift}, number = {06}, issn = {2192-8843}, doi = {10.1007/s35146-015-0043-7}, pages = {68 -- 75}, abstract = {Moderne Verbrennungskraftmaschinen m{\"u}ssen ein stetig wachsendes Anforderungsprofil in Bezug auf Wirtschaftlichkeit, Leistung und Umweltfreundlichkeit erf{\"u}llen. In diesem Zusammenhang hat die Turboaufladung von Verbrennungsmotoren an Bedeutung gewonnen. Bei Turboladern kleiner und mittlerer Baugr{\"o}ße, deren Turbinen einen Durchmesser zwischen 30 und 250 mm aufweisen, kommen vornehmlich gegossene Laufr{\"a}der zum Einsatz. Am Institut f{\"u}r Verkehrstechnik der Brandenburgischen Technischen Universit{\"a}t Cottbus-Senftenberg wurde im Rahmen eines FVV-Forschungsvorhabens der Einfluss charakteristischer Betriebsgr{\"o}ßen eines Turboladers auf das strukturdynamische Verhalten solcher Radialturbinenr{\"a}der untersucht.}, language = {de} } @misc{BeirowKuehhornWeberetal., author = {Beirow, Bernd and K{\"u}hhorn, Arnold and Weber, Robby and Popig, Frederik}, title = {Vibration Analyses of an Axial Turbine Wheel With Intentional Mistuning}, series = {Turbo Expo 2020, Virtual Conference, Virtual Conference and Exhibition, Online, September 21 - 25, 2020}, journal = {Turbo Expo 2020, Virtual Conference, Virtual Conference and Exhibition, Online, September 21 - 25, 2020}, abstract = {The last stage bladed disk of a steam turbine is analyzed with respect to both flutter susceptibility and limitation of forced response. Due to the lack of variable stator vanes unfavorable flow conditions may occur which can lead to flow separation in some circumstances. Consequently, there is the risk of flutter in principle, particularly at nominal speed under part load conditions. For this reason, intentional mistuning is employed by the manufacturer with the objective to prevent any self-excited vibrations. A first step in this direction is done by choosing alternate mistuning, which keeps the manufactural efforts in limits since only two different blade designs are allowed. In this sense, two different series of blades have been made. However, it is well known that small deviations from the design intention are unavoidable due to the manufacturing procedure, which could be proved by bonk tests carried out earlier. The influence of these additional but unwanted deviations is considered in numerical simulations. Moreover, the strong dependence of blade frequencies on the speed is taken into account since it significantly attenuates the blade to blade frequency difference in this particular case. Within an academic study the turbine wheel is modelled as blade integrated disk in order to demonstrate fundamental effects of intentional mistuning on flutter susceptibility and forced response. For that purpose, reduced order models are built up by using the subset of nominal system mode approach introduced by Yang and Griffin [1], which conveniently allows for taking into account both differing mistuning patterns and the impact of aeroelastic interaction. Focusing on the first flap mode it could be shown that a mitigation of flutter susceptibility is achieved by prescribing alternate mistuning, which indeed affects an increase of originally small aerodynamic damping ratios. Nevertheless, the occurrence of negative damping ratios could not be completely precluded at part load conditions. That is why optimization studies are conducted based on genetic algorithms with the objective function of maximizing the lowest aerodynamic damping ratios. Again only two different blade designs are admitted. Finally, mistuning patterns could be identified causing a tremendous increase of aerodynamic damping ratios. The robustness of the solutions found could be proved by superimposing additional random mistuning. Another study is focused on the impact of mistuning strength. Further analyses are addressing the forced response at part speed conditions, where different resonance crossings are becoming apparent in the Campbell plot. An increase of the forced response compared to the tuned counterpart is partly unpreventable because of unfavorable aerodynamic damping curves. Independently, the maximum forced response has to be limited also in case of applying large intentional mistuning. [1] Yang, M. T., Griffin, J. H., „A Reduced-Order model of Mistuning Using a Subset of Nominal System Modes". J Eng Gas Turb Power, 123, pp. 893-900 (2001).}, language = {en} } @misc{FigaschewskyKuehhornBeirowetal., author = {Figaschewsky, Felix and K{\"u}hhorn, Arnold and Beirow, Bernd and Giersch, Thomas and Schrape, Sven}, title = {Analysis of mistuned forced response in an axial high-pressure compressor rig with focus on Tyler-Sofrin modes}, series = {The Aeronautical Journal}, journal = {The Aeronautical Journal}, number = {123}, issn = {2059-6464}, doi = {10.1017/aer.2018.163}, pages = {356 -- 377}, abstract = {This paper aims at contributing to a better understanding of the effect of Tyler-Sofrin Modes (TSMs) on forced vibration responses by analysing a 4.5-stage research axial compressor rig. The first part starts with a brief review of the involved physical mechanisms and necessary prerequisites for the generation of TSMs in multistage engines. This review is supported by unsteady CFD simulations of a quasi 2D section of the studied engine. It is shown that the amplitude increasing effect due to mistuning can be further amplified by the presence of TSMs. Furthermore, the sensitivity with respect to the structural coupling of the blades and the damping as well as the shape of the expected envelope is analysed. The second part deals with the Rotor 2 blisk of the research compressor rig. The resonance of a higher blade mode with the engine order of the upstream stator is studied in two different flow conditions realised by different variable stator vane (VSV) schedules which allows to separate the influence of TSMs from the impact of mistuning. A subset of nominal system modes representation of the rotor is used to describe its mistuned vibration behaviour, and unsteady CFD simulations are used to characterise the present strength of the TSMs in the particular operating conditions. Measured maximum amplitude vs blade pattern and frequency response functions are compared against the predictions of the aeromechanical models in order to assess the strength of the TSMs as well as its influence on vibration levels.}, language = {en} } @misc{BeirowKuehhornFigaschewskyetal., author = {Beirow, Bernd and K{\"u}hhorn, Arnold and Figaschewsky, Felix and H{\"o}nisch, Peter and Giersch, Thomas and Schrape, Sven}, title = {Model update and validation of a mistuned high-pressure compressor blisk}, series = {The Aeronautical Journal}, volume = {123}, journal = {The Aeronautical Journal}, number = {1260}, issn = {2059-6464}, doi = {10.1017/aer.2018.149}, pages = {230 -- 247}, abstract = {In order to prepare an advanced 4-stage high-pressure compressor rig test campaign, details regarding both accomplishment and analysis of preliminary experiments are provided in this paper. The superior objective of the research project is to contribute to a reliable but simultaneously less conservative design of future high pressure blade integrated disks (blisk). It is planned to achieve trend-setting advances based on a close combination of both numerical and experimental analyses. The analyses are focused on the second rotor of this research compressor, which is the only one being manufactured as blisk. The comprehensive test program is addressing both surge and forced response analyses e.g. caused by low engine order excitation. Among others the interaction of aeroelastics and blade mistuning is demanding attention in this regard. That is why structural models are needed, allowing for an accurate forced response prediction close to reality. Furthermore, these models are required to support the assessment of blade tip timing (BTT) data gathered in the rig tests and strain gauge (s/g) data as well. To gain the maximum information regarding the correlation between BTT data, s/g-data and pressure gauge data, every blade of the second stage rotor (28 blades) is applied with s/g. However, it is well known that s/g on blades can contribute additional mistuning that had to be considered upon updating structural models. Due to the relevance of mistuning, efforts are made for its accurate experimental determination. Blade-by-blade impact tests according to a patented approach are used for this purpose. From the research point of view, it is most interesting to determine both the effect s/g-instrumentation and assembling the compressor stages on blade frequency mistuning. That is why experimental mistuning tests carried out immediately after manufacturing the blisk are repeated twice, namely, after s/g instrumentation and after assembling. To complete the pre-test program, the pure mechanical damping and modal damping ratios dependent on the ambient pressure are experimentally determined inside a pressure vessel. Subsequently the mistuning data gained before is used for updating subset of nominal system mode (SNM) models. Aerodynamic influence coefficients (AICs) are implemented to take aeroelastic interaction into account for forced response analyses. Within a comparison of different models, it is shown for the fundamental flap mode (1F) that the s/g instrumentation significantly affects the forced response, whereas the impact of assembling the compressor plays a minor role.}, language = {en} } @misc{HenkeNoackGeyeretal., author = {Henke, Anna-Sophia and Noack, Martin and Geyer, Thomas and Heinrich, Christoph Rocky and Beirow, Bernd and Sarradj, Ennes and K{\"u}hhorn, Arnold}, title = {Calculation of the Modal Behavior of Structured Sheet Metal}, series = {International Journal of Lightweight Materials and Manufacture}, journal = {International Journal of Lightweight Materials and Manufacture}, issn = {2588-8404}, doi = {10.1016/j.ijlmm.2019.01.004}, pages = {13}, language = {en} } @misc{NaveedKuehhornKober, author = {Naveed, Zishan and K{\"u}hhorn, Arnold and Kober, Markus}, title = {Contact Behaviour of Isogeometric Analysis for Rotating Structures and its Industrial Application by Coupling to the Classical Finite Element Method}, series = {VII International Conference on Isogeometric Analysis, M{\"u}nchen, 18.-20. September 2019}, journal = {VII International Conference on Isogeometric Analysis, M{\"u}nchen, 18.-20. September 2019}, pages = {1}, abstract = {Especially for rotating structures like bearings non-smooth contact surfaces, as they appear in classical finite element modeling, lead to various problems during the analysis involving mesh interlocking and spurious oscillations in contact forces. In order to eliminate these issues, very fine meshes and additional smoothing strategies are employed in case of the finite element method (FEM). But also Non-Uniform Rational B-splines (NURBS) based isogeometric analysis (IGA) can be very useful for the contact analysis due to the inherent higher order continuity of NURBS basis functions. In this contribution, the contact behavior using classical FEA and IGA approaches is studied by means of an example of a pendulum under gravitational load. In addition, a more practical example of a coupled IGA-FEM problem with a cylindrical roller bearing is also reported in this paper. This research study of contact analysis has been carried out for the above mentioned examples using LS-DYNA and illustrates that contact surfaces of coarsely meshed geometry lock the rotation of the parts in case of classical FEM. On the contrary, when the contact surface is represented by NURBS elements it allows the rotation of the parts and effectively alleviates the contact force oscillation.}, language = {en} } @inproceedings{BeirowKuehhornGolze, author = {Beirow, Bernd and K{\"u}hhorn, Arnold and Golze, Mark}, title = {Experimental and Numerical Investigations of High pressure Compressor Blades Vibration Behavior Considering Mistuning}, language = {en} } @misc{MaywaldHeinrichKuehhornetal., author = {Maywald, Thomas and Heinrich, Christoph Rocky and K{\"u}hhorn, Arnold and Schrape, Sven and Backhaus, Thomas}, title = {Prediction of Geometrically Induced Localization Effects Using a Subset of Nominal System Modes}, series = {ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition June 17-21, 2019 Phoenix, Arizona, USA}, journal = {ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition June 17-21, 2019 Phoenix, Arizona, USA}, isbn = {978-0-7918-5869-1}, doi = {10.1115/GT2019-90884}, pages = {9}, abstract = {It is widely known that the vibration characteristics of blade integrated discs can dramatically change in the presence of manufacturing tolerances and wear. In this context, an increasing number of publications discuss the influence of the geometrical variability of blades on phenomena like frequency splitting and mode localization. This contribution is investigating the validity of a stiffness modified reduced order model for predicting the modal parameters of a geometrically mistuned compressor stage. In detail, the natural frequencies and mode shapes, as well as the corresponding mistuning patterns, are experimentally determined for an exemplary rotor. Furthermore, a blue light fringe projector is used to identify the geometrical differences between the actual rotor and the nominal blisk design. With the help of these digitization results, a realistic finite element model of the whole compressor stage is generated. Beyond that, a reduced order model is implemented based on the nominal design intention. Finally, the numerical predictions of the geometrically updated finite element model and the stiffness modified reduced order model are compared to the vibration measurement results. The investigation is completed by pointing out the benefits and limitations of the SNM-approach in the context of geometrically induced mistuning effects.}, language = {en} } @misc{FigaschewskyKuehhornBeirowetal., author = {Figaschewsky, Felix and K{\"u}hhorn, Arnold and Beirow, Bernd and Giersch, Thomas and Schrape, Sven and Nipkau, Jens}, title = {An inverse approach to identify tuned aerodynamic damping, system frequencies and mistuning - Part 3: Application to engine data}, series = {ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, June 17-21, 2019, Phoenix, Arizona, USA}, journal = {ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, June 17-21, 2019, Phoenix, Arizona, USA}, isbn = {978-0-7918-5868-4}, doi = {10.1115/GT2019-91337}, pages = {13}, abstract = {A novel approach for the identification of tuned aerodynamic damping, system frequencies, forcing and mistuning has been introduced in the first part of this paper. It is based on the forced response equations of motion for a blade dominated mode family. A least squares formulation allows to identify the system's parameters directly from measured frequency response functions (FRFs) of all blades recorded during a sweep through a resonance. The second part has dealt with its modification and application to experimental modal analyses of blisks at rest. This 3rd part aims at presenting the application of the approach to blade tip timing (BTT) data acquired in rig tests. Therefore, blisk rotors of two different engines are studied: a single stage fan rig and a 4.5 stage high pressure compressor (HPC) rig. The rig test campaign of the fan blisk included also an intentional mistuning experiment that allows to study the performance of the identification approach for a similar rotor with two different mistuning levels. It is demonstrated that the approach can identify aerodynamic damping curves, system frequencies, mistuning pattern and forced travelling wave modes (TWMs) from state of the art BTT data monitored during rig or engine tests. All derived mistuning patterns could be verified with reference measurements at standstill. The derived aerodynamic damping curves and system frequencies show a reasonable agreement with simulations. For the HPC case a multitude of excited TWMs could be identified which also lines up with previous simulations.}, language = {en} } @misc{BeirowKuehhornFigaschewskyetal., author = {Beirow, Bernd and K{\"u}hhorn, Arnold and Figaschewsky, Felix and Bornholm, Alfons}, title = {Vibration analysis of a mistuned axial turbine blisk}, series = {ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, June 17-21, 2019, Phoenix, Arizona, USA}, journal = {ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, June 17-21, 2019, Phoenix, Arizona, USA}, isbn = {978-0-7918-5869-1}, doi = {10.1115/GT2019-92047}, pages = {12}, abstract = {An axial turbine blisk for turbocharger applications is analyzed with respect to the effect of intentional mistuning on the forced response. Originally, the intentional mistuning pattern has been designed by employing a genetic algorithm optimization in order to reduce the forced response caused by low engine order excitation (LEO) of the fundamental flap mode. The solution found has been implemented in a prototype of that blisk. For the purpose of comparison, a second reference blisk has been manufactured without intentional mistuning. The actual mistuning distributions of the blisks have been identified by employing blade-by-blade impact testing. Alternatively, a new inverse approach has been employed, which is based on a least squares formulation and benefits from less experimental effort. Based on the information gained by the aforementioned testing procedures, subset of nominal systems (SNM)-models have been updated, which allow for considering the aeroelastic coupling by means of aerodynamic influence coefficients (AIC). Despite of small but unavoidable deviations from the design intention it could be proved within numerical simulations that the intended 70 per cent reduction of the maximum forced response is nevertheless achieved. In addition, the paper is addressing the effect of the aforementioned intentional mistuning pattern on a higher mode, which is relevant for the durability as well. Hence, new SNM-models have to be updated in order to calculate the forced response due to EO-excitation caused by the nozzle guide vane. Although the original mistuning pattern has been optimized solely for reducing the forced response of the fundamental flap mode, it hardly affects the higher mode forced response in a negative manner.}, language = {en} } @misc{KoberKuehhornKeskin, author = {Kober, Markus and K{\"u}hhorn, Arnold and Keskin, Akin}, title = {Instabilit{\"a}tsprobleme bei der impliziten transienten FEM-Simulation schnell rotierender elastischer Strukturen - Beschreibung des Ph{\"a}nomens und L{\"o}sungsm{\"o}glichkeiten}, series = {NAFEMS-Online-Magazin}, volume = {48}, journal = {NAFEMS-Online-Magazin}, number = {4}, issn = {2311-522X}, pages = {36 -- 49}, language = {en} } @misc{NaveedKuehhornKober, author = {Naveed, Zishan and K{\"u}hhorn, Arnold and Kober, Markus}, title = {Comparative Evaluation of Isogeometric Analysis and Classical FEM with Regard to Contact Anaylsis}, series = {12th European LS-DYNA Conference 2019, 14-16 May 2019, Koblenz}, journal = {12th European LS-DYNA Conference 2019, 14-16 May 2019, Koblenz}, pages = {10}, abstract = {Isogeometric analysis represents a newly developed technique that offers the application of Computer Aided Designs (CAD) concept of Non-uniform Rational B-Splines (NURBS) tool to describe the geometry of the computational domain. The simplified transition of CAD models into the computational domain eliminates the problems arising from the geometrical discontinuities induced by the faceted approximation of the mesh. Moreover, numerical analysis directly on NURBS objects significantly reduces the design-to-analysis time compared to traditional FEA approach. In the field of contact mechanics, when finite elements are applied to geometry with curved surfaces, the result is a non-smooth geometrical representation of interface surfaces which may lead to mesh interlocking, high jumps and spurious oscillations in contact forces. To eliminate these issues, various surface smoothening strategies are to be employed in case of FEM. Isogeometric based analysis alleviates these issues without employing any additional smoothening strategy due to inherent higher order continuity of NURBS basis functions and much more accurate results are obtained compared to conventional FE approach. In the current study, LS-DYNA is used to demonstrate the capabilities and advantage of an isogeometric analysis though an example of pendulum under gravitational load. The numerical simulation results are analytically validated and the comparison of NURBS surfaces with faceted surfaces is carried out to investigate the accuracy.}, language = {en} } @misc{WeberKuehhornBeirow, author = {Weber, Robby and K{\"u}hhorn, Arnold and Beirow, Bernd}, title = {Mistuning and Damping of Turbine and Compressor Impellers}, series = {MTZ worldwide}, volume = {80}, journal = {MTZ worldwide}, number = {9}, issn = {2192-9114}, doi = {10.1007/s38313-019-0090-4}, pages = {72 -- 77}, abstract = {Turbocharging is known to be a well-established technology for an engine's efficiency and power output by forcing extra compressed air into the combustion chamber. The centrifugal loads, necessary flow deflections, unsteady pressure fluctuations, and structural temperature gradients put a high strain on rotating components. Additionally, those components are prone to high-cycle fatigue. The Chair of Structural Mechanics and Vehicle Vibrational Technology at the BTU Cottbus-Senftenberg investigated the impact of manufacturing tolerances on the vibrational behavior of several turbine and compressor impellers. Finally, it is shown that intentional mistuning can lead to significantly lower stresses.}, language = {en} } @article{SchrapeKuehhorn, author = {Schrape, S. and K{\"u}hhorn, Arnold}, title = {FSI of a Simplified Aero Engine Compressor Cascade Configuration}, series = {Proceedings in applied mathematics and mechanics : PAMM}, volume = {6}, journal = {Proceedings in applied mathematics and mechanics : PAMM}, number = {1}, issn = {1617-7061}, pages = {457 -- 458}, language = {en} } @article{KuehhornGolze, author = {K{\"u}hhorn, Arnold and Golze, Mark}, title = {Thickness flexible sandwich theory for the common description of global and local effects}, language = {en} } @article{SchrodtBenderothKuehhorn, author = {Schrodt, M. and Benderoth, G. and K{\"u}hhorn, Arnold}, title = {Hyperelastic description of Polymer Soft Foams at Finite Deformations}, language = {en} } @misc{FigaschewskyBeirowKuehhornetal., author = {Figaschewsky, Felix and Beirow, Bernd and K{\"u}hhorn, Arnold and Nipkau, Jens and Giersch, Thomas and Powers, Bronwyn}, title = {Design and Analysis of an Intentional Mistuning Experiment Reducing Flutter Susceptibility and Minimizing Forced Response of a Jet Engine Fan}, series = {ASME Turbo Expo 2017, GT2017-64621, June 26-30, 2017, Charlotte, NC, USA, Volume 7B}, journal = {ASME Turbo Expo 2017, GT2017-64621, June 26-30, 2017, Charlotte, NC, USA, Volume 7B}, publisher = {ASME}, address = {New York, NY}, isbn = {978-0-7918-5093-0}, doi = {10.1115/GT2017-64621}, pages = {13}, abstract = {Recent demands for a reduction of specific fuel consumption of jet engines have been opposed by increasing propulsive efficiency with higher bypass ratios and increased engine sizes. At the same time the challenge for the engine development is to design safe and efficient fan blades of high aspect ratios. Since the fan is the very first rotor stage, it experiences significant distortions in the incoming flow depending on the operating conditions. Flow distortions do not only lead to a performance and stall margin loss but also to remarkable low engine order (LEO) excitation responsible for forced vibrations of fundamental modes. Additionally, fans of jet engines typically suffer from stall flutter, which can be additionally amplified by reflections of acoustic pressure waves at the intake. Stall flutter appears before approaching the stall line on the fan's characteristic and limits its stable operating range. Despite the fact that this "flutter bite" usually affects only a very narrow speed range, it reduces the overall margin of safe operation significantly. With increasing aspect ratios of ultra-high bypass ratio jet engines the flutter susceptibility will probably increase further and emphasizes the importance of considering aeromechanical analyses early in the design phase of future fans. This paper aims at proving that intentional mistuning is able to remove the flutter bite of modern jet engine fans without raising issues due to heavily increased forced vibrations induced by LEO excitation. Whereas intentional mistuning is an established technology in mitigating flutter, it is also known to amplify the forced response. However, recent investigations considering aeroelastic coupling revealed that under specific circumstances mistuning can also reduce the forced response due to engine order excitation. In order to allow a direct comparison and to limit costs as well as effort at the same time, the intentional mistuning is introduced in a non-destructive way by applying heavy paint to the blades. Its impact on the blade's natural frequencies is estimated via finite element models with an additional paint layer. In parallel, this procedure is experimentally verified with painted fan blades in the laboratory. A validated SNM (subset of nominal system modes) representation of the fan is used as a computational model to characterize its mistuned vibration behavior. Its validation is done by comparing mistuned mode shape envelopes and frequencies of an experimental modal analysis at rest with those obtained by the updated computational model. In order to find a mistuning pattern minimizing the forced response of mode 1 and 2 at the same time and satisfying stability and imbalance constraints, a multi-objective optimization has been carried out. Finally, the beneficial properties of the optimized mistuning pattern are verified in a rig test of the painted rotor. Copyright © 2017 by Rolls-Royce Deutschland Ltd \& Co KG}, language = {en} } @misc{HanschkeKlaukeKuehhorn, author = {Hanschke, Benjamin and Klauke, Thomas and K{\"u}hhorn, Arnold}, title = {The Effect of Foreign Object Damage on Compressor Blade High Cycle Fatigue Strength}, series = {ASME Turbo Expo 2017, GT2017-63559, June 26-30, 2017, Charlotte, NC, USA, Volume 7A}, journal = {ASME Turbo Expo 2017, GT2017-63559, June 26-30, 2017, Charlotte, NC, USA, Volume 7A}, publisher = {ASME}, address = {New York, NY}, isbn = {978-0-7918-5092-3}, doi = {10.1115/GT2017-63599}, pages = {9}, abstract = {For a considerable amount of time blade integrated disks (blisks) are established as a standard component of high pressure compressors (HPCs) in aero engines. Due to the steady requirement to increase the efficiency of modern HPCs, blade profiles get thinned out and aerodynamic stage loading increases. Ever since, aerofoil design has to balance structural and aerodynamic requirements. One particularity of aero engines is the possibility to ingest different kinds of debris during operation and some of those particles are hard enough to seriously damage the aerofoil. Lately, a growing number of blisk-equipped aero engines entered service and the question of foreign object damage (FOD) sensitivity relating to compressor blade high cycle fatigue (HCF) has emerged. Correct prediction of fatigue strength drop due to a FOD provides a huge chance for cost cutting in the service sector as on-wing repairs (e.g. borescope blending) are much more convenient than the replacement of whole blisks and corresponding engine strips. The aim of this paper is to identify critical FOD-areas of a modern HPC stage and to analyze the effects of stress concentrations — caused by FOD — on the fatigue strength. A process chain has been developed, that automatically creates damaged geometries, meshes the parts and analyses the fatigue strength. Amplitude frequency strength (af-strength) has been chosen as fatigue strength indicator owing to the fact, that amplitudes and frequencies of blade vibrations are commonly measured either by blade tip timing or strain gauges. Furthermore, static and dynamic stress concentrations in damaged geometries compared to the reference design were computed. A random variation of input parameters was performed, such as the radial damage position at blade leading edge and damage diameter. Based on results of the different samples, correlations of input parameters and the fatigue strength drop have been investigated. Evaluation shows a significant mode dependence of critical blade areas with a large scatter between drops in fatigue strength visible for mode to mode comparison. Keeping in mind the necessity of fast response times in the in-service sector, FOD sensitivity computations could be performed for all blade rows of the HPC — including the analysis of possible borescope blending geometries — in the design stage. Finally, the actual amplitude frequency levels (af-levels) of the modes excited during operation have to be appropriately taken into consideration. For example, a pronounced af-strength drop due to a FOD may not be critical for safe engine operations because the observed mode is excited by small af-levels during operation. Hence, the endurance ratio — a quotient of af-level and af-strength — is used as assessment criterion. Copyright © 2017 by ASME}, language = {en} } @misc{MaywaldBackhausSchrapeetal., author = {Maywald, Thomas and Backhaus, Thomas and Schrape, Sven and K{\"u}hhorn, Arnold}, title = {Geometric Model Update of Blisks and its Experimental Validation for a Wide Frequency Range}, series = {ASME Turbo Expo 2017, GT2017-63446, June 26-30, 2017, Charlotte, NC, USA, Volume 7A}, journal = {ASME Turbo Expo 2017, GT2017-63446, June 26-30, 2017, Charlotte, NC, USA, Volume 7A}, publisher = {ASME}, address = {New York, NY}, isbn = {978-0-7918-5092-3}, doi = {10.1115/GT2017-63446}, pages = {9}, abstract = {The contribution discusses a model update procedure and its experimental validation in the context of blisk mistuning. Object of investigation is an industrial test blisk of an axial compressor which is milled from solid using a state of the art 5-axis milling machine. First, the blisk geometry is digitized by a blue light fringe projector. Digitization is largely automated using an industrial robot cell in order to guarantee high repeatability of the measurement results. Additionally, frequency mistuning patterns are identified based on vibration measurements. Here, the system excitation is realized by a modal impact hammer. The blade response is detected using a laser scanning vibrometer. Furthermore, all blades except the currently excited one are detuned with additional masses. Applying these masses allows to identify a blade dominated natural frequency for each blade and every mode of interest. Finally, these blade dominated frequencies are summarized to mode specific mistuning patterns. The key part of the contribution presents a model update approach which is focused on small geometric deviations between real engine parts and idealized simulation models. Within this update procedure the nodal coordinates of an initially tuned finite element blisk model were modified in order to match the geometry of the real part measured by blue light fringe projection. All essential pre- and post-processing steps of the mesh morphing procedure are described and illustrated. It could be proven that locally remaining geometric deviations between updated finite element model and the optical measurement results are below 5 μm. For the purpose of validation blade dominated natural frequencies of the updated finite element blisk model are calculated for each sector up to a frequency of 17 kHz. Finally, the numerically predicted mistuning patterns are compared against the experimentally identified counterparts. At this point a very good agreement between experimentally identified and numerically predicted mistuning patterns can be proven across several mode families. Even mistuning patterns of higher modes at about 17 kHz are well predicted by the geometrically mistuned finite element model. Within the last section of the paper, possible uncertainties of the presented model update procedure are analyzed. As a part of the study the digitization of the investigated blisk has been repeated for ten times. These measurement results serve as input for the model update procedure described before. In the context of this investigation ten independent geometrical mistuned simulation models are created and the corresponding mistuning patterns are calculated. Copyright © 2017 by Rolls-Royce Deutschland Ltd \& Co KG}, language = {en} } @misc{KrauseStelldingerHanschkeetal., author = {Krause, Christoph and Stelldinger, Marco and Hanschke, Benjamin and K{\"u}hhorn, Arnold and Giersch, Thomas}, title = {Asynchronous Response Analysis of Non-Contact Vibration Measurements on Compressor Rotor Blades}, series = {ASME Turbo Expo 2017, GT2017-63200, June 26-30, 2017, Charlotte, NC, USA, Volume 7B}, journal = {ASME Turbo Expo 2017, GT2017-63200, June 26-30, 2017, Charlotte, NC, USA, Volume 7B}, publisher = {ASME}, address = {New York, NY}, isbn = {978-0-7918-5093-0}, doi = {10.1115/GT2017-63200}, abstract = {Although the research in non-intrusive techniques for the measurement of vibration have made major progress since the beginning in the 1960's, they are still mainly used as additional tool to the common strain gauges. Therefore, there is still a great deal of interest in the improvement of such non-contact vibration measurement techniques, to replace the intrusive ones with alternative techniques. One possibility to monitor all blades at once is blade tip-timing. The probes for a blade tip-timing measurement system are mounted circumferentially in the engine casing to log the passing times of the rotor blades. These logged time data will be compared with theoretically calculated passing times. The deviation between measured and calculated passing times can be transformed to blade displacement values. In recent years, several methods to analyse the acquired vibration data have been developed and improved. They are directed to evaluate synchronous and asynchronous blade vibration events. This paper focuses on the identification of asynchronous vibrations on rotor blades using blade tip-timing. Taking the data from all probes into account gives an opportunity to determine the vibration of each single blade. Due to the usage of a research test rig, all measurement data could be acquired in simulated real case operation scenarios. Analysis data were evaluated with a developed post processing routine based on a Fourier transformation algorithm coupled with a least square fitting procedure. Since compressor surge represents one of the most critical non synchronous events during compressor operation, in this paper a special interest is paid to the analysis of compressor surges. Vibration frequencies revealed during surge investigation will be compared with simultaneously measured strain gauge data to ensure the reliability of blade tip-timing measurement and analysis. To explain the results in more detail, the possibility of a blade damaged triggered shift of the blade characteristic frequency is shown. The most promising result of the analysis is the close correlation between the identified vibration frequencies of compressor surge events and the afterwards determined frequency mistuning and crack distributions. Blade damage becomes visible through increasing deviation between characteristic frequencies of different blades as result of multiple surge events. In addition, with the comparison of mean frequency records over each single surge among each other it is possible to restrict the blade damage time. Subsequently, the possibility to develop a process routine to predict blade damage during compressor test series could arise.}, language = {en} } @misc{BeirowFigaschewskyKuehhornetal., author = {Beirow, Bernd and Figaschewsky, Felix and K{\"u}hhorn, Arnold and Bornholm, Alfons}, title = {Modal Analyses of an Axial Turbine Blisk With Intentional Mistuning}, series = {ASME Turbo Expo 2017, GT2017-63193, June 26-30, 2017, Charlotte, NC, USA, Volume 7B}, journal = {ASME Turbo Expo 2017, GT2017-63193, June 26-30, 2017, Charlotte, NC, USA, Volume 7B}, publisher = {ASME}, address = {New York, NY}, isbn = {978-0-7918-5093-0}, doi = {10.1115/GT2017-63193}, pages = {10}, abstract = {The potential of intentional mistuning to reduce the maximum forced response is analyzed within the development of an axial turbine blisk for ship diesel engine turbocharger applications. The basic idea of the approach is to provide an increased aerodynamic damping level for particular engine order excitations and mode shapes without any significant distortions of the aerodynamic performance. The mistuning pattern intended to yield a mitigation of the forced response is derived from an optimization study applying genetic algorithms. Two blisk prototypes have been manufactured a first one with and another one without employing intentional mistuning. Hence, the differences regarding the real mistuning and other modal properties can be experimentally determined and evaluated as well. In addition, the experimental data basis allows for updating structural models which are well suited to compute the forced response under operational conditions. In this way, the real benefit achieved with the application of intentional mistuning is demonstrated. Copyright © 2017 by ASME}, language = {en} } @misc{FigaschewskyKuehhornBeirowetal., author = {Figaschewsky, Felix and K{\"u}hhorn, Arnold and Beirow, Bernd and Giersch, Thomas and Nipkau, Jens and Meinl, Ferdinand}, title = {Simplified Estimation of Aerodynamic Damping for Bladed Rotors, Part 2: Experimental Validation During operation}, series = {ASME Turbo Expo 2016, Turbomachinery Technical Conference and Exposition, Volume 7B, Structures and Dynamics, Seoul, South Korea, June 13-17, 2016}, journal = {ASME Turbo Expo 2016, Turbomachinery Technical Conference and Exposition, Volume 7B, Structures and Dynamics, Seoul, South Korea, June 13-17, 2016}, publisher = {ASME}, address = {New York, NY [u.a.]}, isbn = {978-0-7918-4984-2}, doi = {10.1115/GT2016-56458}, abstract = {Due to increasing requirements of future engine projects, much effort has been spent on the design of more efficient turbomachinery blades in the recent years. Besides aerodynamic efficiency constraints, these designs need to meet structural criteria ensuring that they are safe and robust with respect to High Cycle Fatigue (HCF). The estimation of the resonant vibration amplitude is done based on the aerodynamic force and the overall damping level. Since, for many applications the contribution of mechanical damping is often rather low compared to the aerodynamic counterpart, the determination of the aerodynamic damping is vital for the estimation of the forced vibration response. This second part is meant to contribute to a simplified computation of the aerodynamic damping during operation by making additional assumptions: The investigated mode family shall not suffer from flutter, has a high reduced frequency and the influence of adjacent blades is negligible. Under these circumstances a simplified approach can be introduced that allows for the computation of the mean value of the aerodynamic damping based on a steady state CFD solution of the regarded stage. It is well known, that the aerodynamic damping of a blade mode family depends on the inter blade phase angle (IBPA) and its direction of propagation, which is not covered by the simplified approach. For higher modes the difference between the minimum and maximum damping is often low and the mean value is a good approximation, whereas for fundamental modes there is often a significant difference. However, it is shown that considering a mistuned vibration response of the rotor, the expected value of the mistuned damping exhibits the mean value of IBPA-dependent aerodynamic damping. CFD simulations of an oscillating airfoil indicate a certain validity range of the simplified approach based on a modified reduced frequency and inlet Mach number, which allows to determine for which industrial applications the approach is most suitable. Finally, this range of validity is verified with experimentally determined overall damping values from strain gauge measurements during operation for 2 different industrial applications, an axial compressor stage of a jet engine and a radial turbine stage of a turbocharger. Copyright © 2016 by Rolls-Royce Deutschland Ltd \& Co KG}, language = {en} } @misc{WagnerKuehhornWeissetal., author = {Wagner, Frank and K{\"u}hhorn, Arnold and Weiss, Thomas and Otto, Dierk}, title = {Influence of different parametrizations on the optimum design of a high pressure turbine blade firtree}, series = {ASME Turbo Expo 2016, Turbomachinery Technical Conference and Exposition, Volume 7A, Structures and Dynamics, Seoul, South Korea, June 13-17, 2016}, journal = {ASME Turbo Expo 2016, Turbomachinery Technical Conference and Exposition, Volume 7A, Structures and Dynamics, Seoul, South Korea, June 13-17, 2016}, publisher = {ASME}, address = {New York, NY}, isbn = {978-0-7918-4983-5}, doi = {10.1115/GT2016-56749}, pages = {11}, abstract = {Today the design processes in the aero industry face many challenges. Apart from automation itself, a suitable parametric geometry setup plays a significant role in making workflows usable for optimization. At the same time there are tough requirements against the parametric model. For the lowest number of possible parameters, which should be intuitively ascertainable, a high flexibility has to be ensured. Within the parameter range an acceptable stability is necessary. Under these constraints the creation of such parametric models is a challenge, which should not be underestimated especially for a complex geometry. In this work different kinds of parametrization with different levels of complexity will be introduced and compared. Thereby several geometry elements will be used to handle the critical regions of the geometry. In the simplest case a combination of lines and arcs will be applied. These will be replaced by superior elements like a double arc construct or different formulations of b-splines. There will be an additional focus on the variation of spline degree and control points. To guarantee consistency a set of general parameters will be used next to the specific ones at the critical regions. The different parameter boundaries have a influence on the possible geometries and should therefore be tested separately before an optimization run.}, language = {en} } @misc{BeirowMaywaldFigaschewskyetal., author = {Beirow, Bernd and Maywald, Thomas and Figaschewsky, Felix and K{\"u}hhorn, Arnold and Heinrich, Christoph Rocky and Giersch, Thomas}, title = {Simplified Determination of Aerodynamic Damping for Bladed Rotors, Part 1: Experimental Validation at Rest}, series = {ASME Turbo Expo 2016, Turbomachinery Technical Conference and Exposition, Volume 7B, Structures and Dynamics, Seoul, South Korea, June 13-17, 2016}, journal = {ASME Turbo Expo 2016, Turbomachinery Technical Conference and Exposition, Volume 7B, Structures and Dynamics, Seoul, South Korea, June 13-17, 2016}, publisher = {ASME}, address = {New York, NY}, isbn = {978-0-7918-4984-2}, doi = {10.1115/GT2016-56535}, abstract = {Considering both a radial turbine rotor of a turbocharger and an axial compressor test blisk at rest, aerodynamic damping characteristics are experimentally and numerically analyzed. Linear dependencies of modal damping ratios on the ambient pressure or the acoustic impedance, respectively, could be shown within experiments carried out inside a pressure chamber. The impact of the ambient air clearly dominates the modal damping ratios compared to the minor contribution of the structure. Assuming that acoustic emission can be regarded as main source of aerodynamic damping a simplified approach for its determination is introduced which only depends on natural frequency, mode shape and acoustic impedance. It is shown that a satisfying match between experiment and computation is achieved for those cases which are dedicated to sufficiently small ratios between wave lengths of acoustic emissions and blade distances.}, language = {en} }