@inproceedings{BeirowKuehhornNipkau, author = {Beirow, Bernd and K{\"u}hhorn, Arnold and Nipkau, Jens}, title = {Forced Response Reduction of a Compressor Blisk Rotor Employing Intentional Mistuning}, series = {Advances in Mechanism Design II, Proceedings of the XII International Conference on the Theory of Machines and Mechanisms, 6.-8.9.2016, Liberec}, booktitle = {Advances in Mechanism Design II, Proceedings of the XII International Conference on the Theory of Machines and Mechanisms, 6.-8.9.2016, Liberec}, publisher = {Springer International Publishing}, address = {Cham}, isbn = {978-3-319-44087-3}, doi = {10.1007/978-3-319-44087-3_29}, pages = {223 -- 229}, abstract = {Using the example of a compressor test blisk with 29 blades different sources of mistuning and their consequences for the forced response are analysed under consideration of aeroelastic effects. In particular the impact of superimposing intentional structural mistuning by both random structural mistuning and aerodynamic mistuning is studied. For this purpose reduced order models of the blisk are adjusted for different mistuning distributions. The mistuning itself is characterized by assigning individual stiffness parameters to each blade. The aeroelastic coupling is included employing aerodynamic influence coefficients. By means of genetic algorithm optimizations, structural mistuning patterns are found which yield a mitigation of the forced response below that of the tuned design reference. Ideally a nearly 50 \% reduction of maximum response magnitudes is computed for the fundamental bending mode and large mistuning. The solutions found have been proven to be robust with respect to additional random and aerodynamic mistuning in case of large intentional structural mistuning.}, language = {en} } @inproceedings{WeberKuehhorn, author = {Weber, Robby and K{\"u}hhorn, Arnold}, title = {Reduced Order Analyses of Multi-stage Coupled Structures with Main Focus on Disk-Dominated Modes}, series = {Advances in Mechanism Design II, Proceedings of the XII International Conference on the Theory of Machines and Mechanisms}, booktitle = {Advances in Mechanism Design II, Proceedings of the XII International Conference on the Theory of Machines and Mechanisms}, publisher = {Springer International Publishing}, address = {Cham}, isbn = {978-3-319-44087-3}, doi = {10.1007/978-3-319-44087-3_34}, pages = {263 -- 268}, abstract = {Rotors manufactured as blisk (Blade Integrated Disk) has become state-of-the-art in turbomachinery. This integral design saves a lot of mass and enables higher rotational speeds allowing for higher pressure ratios and hence an increased efficiency. The advantage comes along with the drawback that the structural damping level is extremely low. Nowadays, the dynamics of single-stage rotors is well-investigated, as dynamical analysis of cyclic structures is one of the most important subjects in applied research in turbomachinery. However, the stage-to-stage coupling effect is neglected in most cases. The importance of proper interstage treatment is obvious for adequate multi-stage analyses. Hence the structural dynamics of a multi-stage assembly has recently become an important area of research. In this paper, some multi-stage effects are discussed and three different reduced order techniques are summarized and demonstrated on a multi-stage assembly of academic blisks. The findings are compared to a FE-solution. Particular attention must be paid to disk-dominated modes, which are highly affected by multi-stage behavior. Mistuning modeling is not considered, because it mainly influences blade-dominated vibrations.}, language = {en} } @inproceedings{WeberKuehhorn, author = {Weber, Robby and K{\"u}hhorn, Arnold}, title = {Uncertainty Quantification for Predicted Endurance due to Mistuning in Turbomachinery}, series = {Proceedings of International Conference on Uncertainty in Structural Dynamics (USD 2016), 19 to 21 September, 2016, Leuven, Belgium}, booktitle = {Proceedings of International Conference on Uncertainty in Structural Dynamics (USD 2016), 19 to 21 September, 2016, Leuven, Belgium}, publisher = {Departement Werktuigkunde}, address = {Heverlee (Belgium)}, isbn = {978-90-73802-94-0}, abstract = {Rotors manufactured as blisk (Blade Integrated Disk) are manifoldly used in state-of-the-art turbomachinery. Commonly, the endurance is evaluated by a numerical analysis of as designed rotor. Since small deviations due to the manufacturing cause slightly different blades, mistuning in turbomachinery is unavoidable. Mistuning causes increased vibration amplitudes - higher than those to be expected in case of the ideal design intention. Nowadays, there are various model updating procedures to ensure a more realistic modelling of blisks. Within Monte Carlo simulations, one obtains a well-approximated maximum vibration amplitude at tolerable costs, the effect of fractional alterations of eigenmodes due to geometric imperfections is normally neglected. Value and location of maximum stress are sensitive to geometric deviations but also decisive for an adequate calculation of the High Cycle Fatigue, which itself is one of the main causes of blisk failure.}, language = {en} } @misc{BeirowFigaschewskyKuehhornetal., author = {Beirow, Bernd and Figaschewsky, Felix and K{\"u}hhorn, Arnold and Bornholm, Alfons}, title = {Modal Analyses of an Axial Turbine Blisk With Intentional Mistuning}, series = {Journal of Engineering for Gas Turbines and Power}, volume = {140}, journal = {Journal of Engineering for Gas Turbines and Power}, number = {1}, issn = {0742-4795}, doi = {10.1115/1.4037588}, pages = {012503-1 -- 012503-11}, abstract = {The potential of intentional mistuning to reduce the maximum forced response is analyzed within the development of an axial turbine blisk for ship diesel engine turbocharger applications. The basic idea of the approach is to provide an increased aerodynamic damping level for particular engine order excitations and mode shapes without any significant distortions of the aerodynamic performance. The mistuning pattern intended to yield a mitigation of the forced response is derived from an optimization study applying genetic algorithms. Two blisk prototypes have been manufactured a first one with and another one without employing intentional mistuning. Hence, the differences regarding the real mistuning and other modal properties can be experimentally determined and evaluated as well. In addition, the experimental data basis allows for updating structural models which are well suited to compute the forced response under operational conditions. In this way, the real benefit achieved with the application of intentional mistuning is demonstrated.}, language = {en} } @misc{KoberKuehhorn, author = {Kober, Markus and K{\"u}hhorn, Arnold}, title = {Stable implicit time-integration of flexible rotating structures—explanation for instabilities and concepts for avoidance}, series = {Applied Mathematical Modelling}, volume = {60}, journal = {Applied Mathematical Modelling}, issn = {0307-904X}, doi = {10.1016/j.apm.2018.03.017}, pages = {235 -- 243}, abstract = {Instabilities occurring during the implicit time-integration are still handicapping a time-efficient solution of large FEM systems of equations. Especially the simulation of flexible rotating structures is barely mastered by implicit FEM codes. For this, the Newmark algorithm and related algorithms are used for many years. Here, we derive the reasons for the mentioned inevitable numerical issues and present concepts that lead to an efficient and stable solution.}, language = {en} } @misc{BeirowKuehhornFigaschewskyetal., author = {Beirow, Bernd and K{\"u}hhorn, Arnold and Figaschewsky, Felix and Bornholm, Alfons and Repetckii, Oleg V.}, title = {Forced Response Reduction of a Blisk by Means of Intentional Mistuning}, series = {Journal of Engineering for Gas Turbines and Power}, volume = {141}, journal = {Journal of Engineering for Gas Turbines and Power}, number = {1}, issn = {1528-8919}, doi = {10.1115/1.4040715}, pages = {011008-1 -- 011008-8}, abstract = {The effect of intentional mistuning has been analyzed for an axial turbocharger blisk with the objective of limiting the forced response due to low engine order excitation (LEO). The idea behind the approach was to increase the aerodynamic damping for the most critical fundamental mode in a way that a safe operation is ensured without severely losing aerodynamic performance. Apart from alternate mistuning a more effective mistuning pattern is investigated, which has been derived by means of optimization employing genetic algorithms. In order to keep the manufacturing effort as small as possible only two blade different geometries have been allowed which means that an integer optimization problem has been formulated. Two blisk prototypes have been manufactured for the purpose of demonstrating the benefit of the intentional mistuning pattern identified in this way: A first one with and a second one without employing intentional mistuning. The real mistuning of the prototypes has been experimentally identified. It is shown that the benefit regarding the forced response reduction is retained in spite of the negative impact of unavoidable additional mistuning due to the manufacturing process. Independently, further analyzes have been focused on the robustness of the solution by considering increasing random structural mistuning and aerodynamic mistuning as well. The latter one has been modeled by means of varying aerodynamic influence coefficients (AIC) as part of Monte Carlo simulations. Reduced order models have been employed for these purposes.}, language = {en} } @misc{WeberKuehhornHeinrich, author = {Weber, Robby and K{\"u}hhorn, Arnold and Heinrich, Christoph Rocky}, title = {Modelling and analysis of a high-speed turbine impeller concerning mistuning}, series = {The 14th International Conference of machinery (VETOMAC XIV), Lissabon, 10-13 September 2018}, journal = {The 14th International Conference of machinery (VETOMAC XIV), Lissabon, 10-13 September 2018}, doi = {10.1051/matecconf/201821118002}, pages = {6}, abstract = {As-manufactured impellers behave significantly different from nominal impellers. There are no identical blades due to geometric and material deviations. In this paper three model updating procedures are discussed with the objective to achieve realistic models of as-manufactured impellers. The techniques are applied to radial inflow turbine wheel of an exhaust gas turbocharger. The first approach creates a model through optical measurement and mesh morphing. The second approach is based on a contactless measurement of blade individual vibration responses. An iterative update process gains the corresponding mistuning pattern and thus the associated model. Third, a model is found by an optimisation, that identified a mistuning pattern, that fits modal characteristics, which are evaluated during experimental modal analysis at vacuum. In-depth analyses of these models are realised to determine advantages and drawbacks of the procedures.}, language = {en} } @misc{WeberKuehhorn, author = {Weber, Robby and K{\"u}hhorn, Arnold}, title = {Mistuning Identification Approach With Focus on High-Speed Centrifugal Compressors}, series = {ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Volume 7C: Structures and Dynamics, Oslo, Norway, June 11-15, 2018}, journal = {ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Volume 7C: Structures and Dynamics, Oslo, Norway, June 11-15, 2018}, publisher = {ASME}, address = {New York, NY}, isbn = {978-0-7918-5115-9}, doi = {10.1115/GT2018-75382}, pages = {10}, abstract = {Blade vibrations are one of the main cost drivers in turbo-machinery. Computational blade vibration analysis facilitates an enormous potential to increase the productivity in the design of bladed components. Increasing computing power as well as improved modeling and simulation methods lead to comprehensive calculation results. This allows for a more precise prediction and assessment of experimental data. Usually, in the field of turbomachinery, identical blades are assumed to lower the required computational resources. However, mistuning is unavoidable, since small deviations due to the manufacturing process will lead to slightly different blade behavior. Potential effects such as mode localization and amplification can be treated statistically and have been thoroughly studied in the past. Since then, several reduced order models (ROMs) have been invented in order to calculate the maximum vibration amplitude of a fleet of mistuned blisks. Most commonly, mistuning is thereby modeled by small material deviations from blade to blade, e.g. Young's modulus or density. Nowadays, it is common knowledge that the level of manufacturing imperfection (referred as level of mistuning) significantly influence mode localization as well as vibration amplification effects. Optical measurements of the geometric deviations of manufactured blades and converting to a high-fidelity finite element model make huge progress. However, to the knowledge of the authors, there is no reliable method, that derives a characteristic quantity from the geometric mistuning, that fits into the mentioned statistically approaches. Therefore, experimental data is needed to quantify the level of mistuning. Several approaches, which isolate blade individual parameters, are used to identify the dynamic behavior of axial compressors and turbines. These methods can be applied to medium-speed centrifugal turbine wheels but tend to fail to evaluate high-speed compressor with splitter blades. This paper briefly presents the original approach and discusses the reasons for failure. Thereafter, a new approach is proposed. Finally the level of mistuning and important quantities to perform a statistical evaluation of a high-speed compressor is shown. Copyright © 2018 by ASME}, language = {en} } @misc{WagnerKuehhornJanetzkeetal., author = {Wagner, Frank and K{\"u}hhorn, Arnold and Janetzke, Timm and Gerstberger, Ulf}, title = {Multi-Objective Optimization of the Cooling Configuration of a High Pressure Turbine Blade}, series = {ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Volume 5C: Heat Transfer Oslo, Norway, June 11-15, 2018}, journal = {ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Volume 5C: Heat Transfer Oslo, Norway, June 11-15, 2018}, publisher = {ASME}, address = {New York, NY}, isbn = {978-0-7918-5110-4}, doi = {10.1115/GT2018-75616}, pages = {10}, abstract = {Due to the increasing turbine inlet temperature and in order to improve the overall efficiency it is necessary to optimize the cooling design of the hot gas components of an aero engine. The current paper discusses the strategy of optimizing a rotor blade cooling configuration of a small civil aero engine, comprising of films and internal turbulators (ribs). An insight into the parametrization is given including the location of the films and ribs as well as the number of the films and ribs. The parameter reduction results in 18 input parameters for the optimizations to limit the number of parameters to an acceptable level. Two optimizations are carried out with the primary objectives of non-dimensional mass flow and overall cooling effectiveness. Different optimization algorithms are used, namely AMGA and NSGA-II, and compared afterwards. A further optimization is carried out with direct objectives of mass flow and mean surface temperature using the AMGA algorithm. The outputs from the optimizations are presented as a pareto-front. These plots are used for a comparison of the optimization algorithms and formulations respectively. Finally, the differences are discussed and the advantages and disadvantages of the algorithms used are highlighted. Copyright © 2018 by Rolls-Royce Deutschland Ltd \& Co KG}, language = {en} } @misc{BeirowFigaschewskyKuehhornetal., author = {Beirow, Bernd and Figaschewsky, Felix and K{\"u}hhorn, Arnold and Bornholm, Alfons}, title = {Vibration Analysis of an Axial Turbine Blisk with Optimized Intentional Mistuning Pattern}, series = {Journal of Sound and Vibration}, volume = {442}, journal = {Journal of Sound and Vibration}, issn = {0022-460X}, doi = {10.1016/j.jsv.2018.10.064}, pages = {11 -- 27}, abstract = {With the objective of attenuating the forced response of an axial turbine blisk for ship Diesel engine applications efforts have been made to increase the aerodynamic damping contribution for the most critical modes. In this regard the potential of intentional mistuning is investigated since it offers the opportunity to ensure a safe operation without a severe loss of aerodynamic performance. Genetic algorithms have been chosen to derive an optimized mistuning pattern resulting in a forced response clearly below that of the tuned counterpart. In order to keep the manufacturing effort within a limit only two possible blade geometries are allowed, which means that an integer optimization problem has been formulated. For the purpose of demonstrating the benefit of the intentional mistuning pattern found, two blisk prototypes have been manufactured: One with and another one without employing intentional mistuning for purposes of comparison. Furthermore, this offers the opportunity for an experimental determination of actually manufactured mistuning and other modal properties as well. The experimental data basis is employed to update structural models, which are well suited to demonstrate the forced response reduction under operational conditions. Finally, the robustness of the gain achieved with intentional mistuning could be proved towards both additional but unavoidable random structural and aerodynamic mistuning.}, language = {en} }