@misc{HillerPennekampDahlmannsetal., author = {Hiller, Jens and Pennekamp, Jan and Dahlmanns, Markus and Henze, Martin and Panchenko, Andriy and Wehrle, Klaus}, title = {Tailoring Onion Routing to the Internet of Things: Security and Privacy in Untrusted Environments}, series = {Proceedings of the 27th annual IEEE International Conference on Network Protocols (IEEE ICNP 2019), Chicago, Illinois, USA, October 2019}, journal = {Proceedings of the 27th annual IEEE International Conference on Network Protocols (IEEE ICNP 2019), Chicago, Illinois, USA, October 2019}, publisher = {IEEE Press}, isbn = {978-1-7281-2700-2}, issn = {2643-3303}, doi = {10.1109/ICNP.2019.8888033}, pages = {12}, abstract = {An increasing number of IoT scenarios involve mobile, resource-constrained IoT devices that rely on untrusted networks for Internet connectivity. In such environments, attackers can derive sensitive private information of IoT device owners, e.g., daily routines or secret supply chain procedures, when sniffing on IoT communication and linking IoT devices and owner. Furthermore, untrusted networks do not provide IoT devices with any protection against attacks from the Internet. Anonymous communication using onion routing provides a well-proven mechanism to keep the relationship between communication partners secret and (optionally) protect against network attacks. However, the application of onion routing is challenged by protocol incompatibilities and demanding cryptographic processing on constrained IoT devices, rendering its use infeasible. To close this gap, we tailor onion routing to the IoT by bridging protocol incompatibilities and offloading expensive cryptographic processing to a router or web server of the IoT device owner. Thus, we realize resource-conserving access control and end-toend security for IoT devices. To prove applicability, we deploy onion routing for the IoT within the well-established Tor network enabling IoT devices to leverage its resources to achieve the same grade of anonymity as readily available to traditional devices.}, language = {en} } @misc{DeLaCadenaMitsevaPennekampetal., author = {De La Cadena, Wladimir and Mitseva, Asya and Pennekamp, Jan and Hiller, Jens and Lanze, Fabian and Engel, Thomas and Wehrle, Klaus and Panchenko, Andriy}, title = {POSTER: Traffic Splitting to Counter Website Fingerprinting}, series = {CCS '19 Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security , London, UK, November 11 - 15, 2019.}, journal = {CCS '19 Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security , London, UK, November 11 - 15, 2019.}, publisher = {ACM Press}, address = {New York}, isbn = {978-1-4503-6747-9}, doi = {10.1145/3319535.3363249}, pages = {2533 -- 2535}, abstract = {Website fingerprinting (WFP) is a special type of traffic analysis, which aims to infer the websites visited by a user. Recent studies have shown that WFP targeting Tor users is notably more effective than previously expected. Concurrently, state-of-the-art defenses have been proven to be less effective. In response, we present a novel WFP defense that splits traffic over multiple entry nodes to limit the data a single malicious entry can use. Here, we explore several traffic-splitting strategies to distribute user traffic. We establish that our weighted random strategy dramatically reduces the accuracy from nearly 95\% to less than 35\% for four state-of-the-art WFP attacks without adding any artificial delays or dummy traffic.}, language = {en} } @misc{BuscemiTurcanuCastignanietal., author = {Buscemi, Alessio and Turcanu, Ion and Castignani, German and Panchenko, Andriy and Engel, Thomas and Shin, Kang G.}, title = {A Survey on Controller Area Network Reverse Engineering}, series = {IEEE Communications Surveys \& Tutorials}, volume = {25}, journal = {IEEE Communications Surveys \& Tutorials}, number = {3,3}, publisher = {IEEE}, issn = {1553-877X}, doi = {10.1109/COMST.2023.3264928}, pages = {1445 -- 1481}, abstract = {Controller Area Network (CAN) is a masterless serial bus designed and widely used for the exchange of mission and time-critical information within commercial vehicles. In-vehicle communication is based on messages sent and received by Electronic Control Units (ECUs) connected to this serial bus network. Although unencrypted, CAN messages are not easy to interpret. In fact, Original Equipment Manufacturers (OEMs) attempt to achieve security through obscurity by encoding the data in their proprietary format, which is kept secret from the general public. As a result, the only way to obtain clear data is to reverse engineer CAN messages. Driven by the need for in-vehicle message interpretation, which is highly valuable in the automotive industry, researchers and companies have been working to make this process automated, fast, and standardized. In this paper, we provide a comprehensive review of the state of the art and summarize the major advances in CAN bus reverse engineering. We are the first to provide a taxonomy of CAN tokenization and translation techniques. Based on the reviewed literature, we highlight an important issue: the lack of a public and standardized dataset for the quantitative evaluation of translation algorithms. In response, we define a complete set of requirements for standardizing the data collection process. We also investigate the risks associated with the automation of CAN reverse engineering, in particular with respect to the security network and the safety and privacy of drivers and passengers. Finally, we discuss future research directions in CAN reverse engineering.}, language = {en} }