@misc{YasenchukGuntherMarchenkoetal., author = {Yasenchuk, Yuri and Gunther, Victor and Marchenko, Ekaterina and Chekalkin, Timofey and Baigonakova, Gulsharat and Hodorenko, Valentina and Gunther, Sergey and Kang, Ji-hoon and Weiß, Sabine and Obrosov, Aleksei}, title = {Formation of mineral phases in self-propagating high-temperature synthesis (SHS) of porous TiNi alloy}, series = {Materials Research Express}, volume = {6}, journal = {Materials Research Express}, number = {5}, issn = {2053-1591}, doi = {10.1088/2053-1591/ab01a1}, pages = {13}, abstract = {The complex structural-phase composition, morphology and elemental composition of surface and nonmetallics in porous TiNi compounds produced by self-propagating high-temperature synthesis (SHS) in a flow reactor in the layer-by-layer combustion mode were analyzed. The samples were investigated using light microscopy (LM), X-ray diffraction (XRD), scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), and energy dispersive X-ray spectroscopy (EDS). The findings indicate that in addition to the TiNi and Ti2Ni intermetallic constituents, the pore's surface contains numerous Ti4Ni2(O,N,C) nanocrystalline oxycarbonitrides, spinels, polysilicates, and residual amorphous phases. The elemental composition of the surface and crystalline inclusions is investigated by the EDS method. LM, SEM, TEM, and EDS instrumental examination revealed the entire surface comprising a continuous shell of intermetallic superficial bulb-shaped structures, as well as crystalline inclusions of polysilicates and spinels in the intergranular peritectic phase. Prominent morphology was confirmed to appear throughout the pore's surface owing to the interaction of the peritectic liquid (PL) with reaction gases. The epitaxial, nanocrystalline strata of intermetallic oxycarbonitrides were shown to have the intricate nature. Reaction gases chemisorbed by the PL are responsible for the continuous and dense substrate, which ultrafine structure modulates a high corrosion resistance. On the contrary, the sparse and foamy overlay resulted from a convective transfer of the PL by reaction gases facilitates in vivo bio-integration of the alloy. Overall, this sheds light on and may be more indicative of the complex role of superficial strata and nonmetallic crystals in enhanced biocompatibility of the unwrought porous TiNi alloy.}, language = {en} } @misc{FellahHezilDjellabietal., author = {Fellah, Mamoun and Hezil, Naouel and Djellabi, Ridha and Samad, Mohammed Abdul and Touhami, Mohamed Zine and Montagne, Alex and Iost, Alain and Obrosov, Aleksei and Weiß, Sabine}, title = {Rapid and enhanced recovery of poly-dispersed nonionic surfactant (TX-100) from organic mediums using dehydrated and rehydrated kaolin}, series = {Applied Clay Science}, volume = {177}, journal = {Applied Clay Science}, issn = {0169-1317}, doi = {10.1016/j.clay.2019.05.004}, pages = {43 -- 50}, abstract = {The recovery of surfactants from organic mediums is of great economic and environmental interests in the field of petrochemicals sector. The aim of this study was to recover poly-dispersed nonionic surfactant (TX-100) from organic medium by the use of dehydrated and rehydrated kaolin. It was found that the presence of water after kaolin rehydration decreases considerably the amount of TX-100 adsorption from 28.7 μmol.g-1 onto dehydrated kaolin to 23.4 μmol.g-1 onto rehydrated kaolin. The estimation of the number of statistical layers of water deposited on kaolin was observed to be about 7 to 9. The effect of type of solvents (heptane, cyclohexane and benzene) on the adsorption onto rehydrated kaolin revealed a reduction in the adsorbed quantity; the adsorbed amounts were found to be 28.7 μmol.g-1, 26.7 μmol.g-1 and 24.2 μmol.g-1 in heptane, cycloheptane and benzene phases, respectively. On the other hand, it was observed that a temperature increased from 20 °C to 35 °C and 45 °C negatively affects the adsorption of TX-100 onto dehydrated and/or hydrated kaolin in heptane medium.}, language = {en} } @misc{FellahHezilSamadetal., author = {Fellah, Mamoun and Hezil, Naouel and Samad, Mohammed Abdul and Montagne, Alex and Kosman, Stephania and Megias, Alberto and Iost, Alain and Obrosov, Aleksei and Weiß, Sabine}, title = {Biotribocorrosion behaviour of newly developed nanostructured near β-types Titanium based Alloys for Biomedical Applications}, series = {nanoMAT2019 - 2nd International Conference on Nanomaterials and Their Applications}, journal = {nanoMAT2019 - 2nd International Conference on Nanomaterials and Their Applications}, pages = {170}, abstract = {The biotribocorrosion behavior of newly developed nanocristalline near β-types Ti-15Nb and Ti-15Mo alloys surfaces, sintered by powder metallurgy and sequentially milled, has been investigated in SBF simulated body fluid (PBS solution) at OCP, an applied potential in the passive region and EIS. Reciprocating sliding tests using a ball-on-plate tribometer under differentes applied loads 3, 7 and 10 N load and anodic potentials were applied to evaluate the effect of applied lad and the effect of Nb and Mo elements on tribocorrosion behaviors of samples. Results showed that, Ti-Nb exhibited better anticorrosive properties than Ti-Mo. Under tribological action the nanostructured both of alloys showed similar friction coefficient, while Ti-Nb present lower tendency to corrosion compared to Ti-Mo. Furthermore, Nb diffusion increased the repassivation rate with respect to Ti-Mo surfaces due to its stable passive film. Due to the high chemical reaction rate in β-type Ti-15Mo alloy as compared to Ti-15Nb. The β- Ti-15Nb showed lower volume loss, lower friction coefficient values and exhibited better corrosion resistance during tribocorrosion tests than Ti-15Mo. Prevailing electrochemical conditions between -1 and 2 V influences the wear accelerated corrosion by increasing it with the applied potential and slightly increases the mechanical wear. Also, wear accelerated corrosion can be predicted by existing models as a function of electrochemical and mechanical parameters of the titanium alloys. However, considering biomedical applications, the β- Ti15 Mo and Ti15Nb alloys may be good candidates with low elastic modulus and without toxic alloying elements.}, language = {en} } @misc{ObrosovYasenchukMarchenkoetal., author = {Obrosov, Aleksei and Yasenchuk, Yuri and Marchenko, Ekaterina and Gunther, Victor and Radkevich, Andrey and Kokorev, Oleg and Gunther, Sergey and Baigonakova, Gulsharat and Hodorenko, Valentina and Chekalkin, Timofey and Kang, Ji-hoon and Weiß, Sabine}, title = {Biocompatibility and Clinical Application of Porous TiNi Alloys Made by Self-Propagating High-Temperature Synthesis (SHS)}, series = {Materials}, volume = {12}, journal = {Materials}, number = {15}, issn = {1996-1944}, doi = {10.3390/ma12152405}, pages = {25}, abstract = {Porous TiNi alloys fabricated by self-propagating high-temperature synthesis (SHS) are biomaterials designed for medical application in substituting tissue lesions and they were clinically deployed more than 30 years ago. The SHS process, as a very fast and economically justified route of powder metallurgy, has distinctive features which impart special attributes to the resultant implant, facilitating its integration in terms of bio-mechanical/chemical compatibility. On the phenomenological level, the fact of high biocompatibility of porous SHS TiNi (PTN) material in vivo has been recognized and is not in dispute presently, but the rationale is somewhat disputable. The features of the SHS TiNi process led to a multifarious intermetallic Ti4Ni2(O,N,C)-based constituents in the amorphous-nanocrystalline superficial layer which entirely conceals the matrix and enhances the corrosion resistance of the unwrought alloy. In the current article, we briefly explore issues of the high biocompatibility level on which additional studies could be carried out, as well as recent progress and key fields of clinical application, yet allowing innovative solutions.}, language = {en} } @misc{FellahHezilSamadetal., author = {Fellah, Mamoun and Hezil, Naouel and Samad, Mohammed Abdul and Djellabi, Ridha and Montagne, Alex and Mejias, Alberto and Kossman, Stephania and Iost, Alain and Purnama, Agung and Obrosov, Aleksei and Weiß, Sabine}, title = {Effect of Molybdenum Content on Structural, Mechanical, and Tribological Properties of Hot Isostatically Pressed β-Type Titanium Alloys for Orthopedic Applications}, series = {Journal of Materials Engineering and Performance}, volume = {28}, journal = {Journal of Materials Engineering and Performance}, number = {10}, issn = {1059-9495}, doi = {10.1007/s11665-019-04348-w}, pages = {5988 -- 5999}, abstract = {Aiming to develop alloys with better properties for orthopedic applications, the focus of the present research was to evaluate the effect of Mo at.\% content on structural, mechanical, and tribological properties of hot isostatically pressed Ti-xMo (x = 4, 8, 12, 15, and 20 at.\%) alloys. The structural evolution, mechanical properties, and tribological behavior of the nanostructured Ti-xMo alloys were evaluated using x-ray diffraction, scanning electron microscope, and ball-on-disk tribometer. Wear tests were conducted under different applied loads of 2, 8, and 16 N. Experimental results indicated that the structural evolution and morphological changes of the milled alloys were sensitive to their molybdenum (Mo) content. The morphological characterization showed that the crystallite size and the particle size decreased with increasing Mo content (at.\%) reaching the lowest values of 27 and 26 nm in the case of Ti-15Mo and Ti-20Mo, respectively. On the other hand, the coefficient of friction and wear rates were found to be decreasing with increasing Mo content.}, language = {en} } @misc{FellahHezilSamadetal., author = {Fellah, Mamoun and Hezil, Naouel and Samad, Mohammed Abdul and Touhami, Mohamed Zine and Montagne, Alex and Iost, Alain and Obrosov, Aleksei and Weiß, Sabine}, title = {Preliminary investigation on the bio-tribocorrosion behavior of porous nanostructured β-type titanium based biomedical alloys}, series = {Materials Letters}, volume = {257}, journal = {Materials Letters}, issn = {0167-577X}, doi = {10.1016/j.matlet.2019.126755}, pages = {4}, abstract = {The bio-tribocorrosion behavior of newly developed near β-types Ti-15Nb and Ti-15Mo alloys was investigated in Phosphate-Buffered Saline (PBS) under different loads. Open-Circuit Potential (OCP), friction coefficient, wear volume and wear rate were evaluated. The results revealed that Ti-15Nb alloy exhibited lower wear rate, lower friction coefficient and better corrosion resistance during tribocorrosion than the Ti-15Mo alloy. This can be attributed to the diffusion of Nb which increases the repassivation rate (formation of a protective layer) in the Ti-15Nb alloy. In contrast Ti-15Mo shows a significantly higher rate of chemical reaction.}, language = {en} } @misc{FellahHezilTouhamietal., author = {Fellah, Mamoun and Hezil, Naouel and Touhami, Mohamed Zine and Obrosov, Aleksei and Weiß, Sabine and Kashkarov, Egor B. and Lider, Andrey M. and Montagne, Alex and Iost, Alain}, title = {Enhanced Structural and Tribological Performance of Nanostructured Ti-15Nb Alloy for Biomedical Applications}, series = {Results in Physics}, volume = {15}, journal = {Results in Physics}, issn = {2211-3797}, doi = {10.1016/j.rinp.2019.102767}, pages = {7}, abstract = {Low modulus β-type Ti-15Nb alloys were prepared by subjecting them to different sintering temperatures (800, 900, 1000 and 1100 °C) and their morphological and structural properties were evaluated. X-ray diffraction analysis was used for the morphological characterization which indicated that the mean pore and crystallite size continuously decreased with increasing sintering temperature to reach the lowest values of 41 nm and 27.5 nm at 1100 °C, respectively. Moreover, the higher sintering temperature resulted in higher relative density, greater hardness and young's modulus of the Ti-15Nb alloys. Wear tests were conducted using a ball-on-plate type Oscillating tribometer, under different applied loads (2, 8 and 16 N) to evaluate their tribological characterization. The wear rate and friction coefficient were lower at higher sintering temperature. This enhancement in tribological properties was attributed to a grain refinement. The Ti-15Nb alloys sintered at 1100 °C showed the best tribological performance.}, language = {en} } @misc{FellahHezilTouhamietal., author = {Fellah, Mamoun and Hezil, Naouel and Touhami, Mohamed Zine and Hussien, Mohammed A. and Montagne, Alex and Mejias, Alberto and Iost, Alain and Kossman, Stephania and Chekalkin, Timofey and Obrosov, Aleksei and Weiß, Sabine}, title = {Effect of Sintering Temperature on Mechanical and Tribological Behavior of Ti-Ni Alloy for Biomedical Applications}, series = {TMS 2020 149th Annual Meeting \& Exhibition Supplemental Proceedings}, journal = {TMS 2020 149th Annual Meeting \& Exhibition Supplemental Proceedings}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-36295-9}, issn = {2367-1181}, doi = {10.1007/978-3-030-36296-6_157}, pages = {1701 -- 1710}, abstract = {Ti-Ni powder compacts were prepared by mechanical alloying (MA), followed by hot isostatic pressing (HIP). Afterwards, the samples were sintered at different temperatures (950, 1050, 1150 and 1250 °C). Microhardness, density, crystallite size as well as microstrain of the sintered samples were measured and analyzed. Wear characteristics in phosphate-buffered saline (PBS) solution was tested under different applied loads of 2 N, 10 N, and 20 N, respectively. The results indicated that the crystallite size continuously decreases with increasing sintering temperature and reaches the lowest value of 31.3 nm at 1250 °C. The relative density of the sample sintered at 1250 °C is 98.0\%. Moreover, the higher sintering temperatures lead to the higher relative density and the increase in hardness and young's modulus of the sample. At the same time the friction coefficient and wear rate were lower for the samples sintered at 1250 °C. This improvement in friction and wear resistance is attributed to the grain size refinement. Ti-Ni sintered at 1250 °C showed good tribological performance under all test conditions.}, language = {en} } @misc{BaigonakovaMarchenkoChekalkinetal., author = {Baigonakova, Gulsharat and Marchenko, Ekaterina and Chekalkin, Timofey and Kang, Ji-hoon and Weiß, Sabine and Obrosov, Aleksei}, title = {Influence of Silver Addition on Structure, Martensite Transformations and Mechanical Properties of TiNi-Ag Alloy Wires for Biomedical Application}, series = {Materials}, volume = {13}, journal = {Materials}, number = {21}, issn = {1996-1944}, doi = {10.3390/ma13214721}, pages = {11}, abstract = {The microstructural and functional behavior of TiNi-based wires with a silver content of 0-1.5 at.\% was evaluated. The concentration range for Ag doping determined for the TiNi wires with potential for the medical industry was 0-0.2 at.\%. Microstructure analysis of TiNi wires with different silver contents at room temperature indicated a multiphase structural state. Various internal structures with tangled grain boundaries were formed by intense plastic deformation. The nanocrystalline structure and phase state of wire with the minimum silver content (0.1 at.\% Ag) provide full shape recovery, the greatest reversible strain, and optimal strength and ductility. TiNi ingots with a high Ag content (0.5-1.5 at.\%) cracked under minimum load due to excess silver that crystallized along the grain boundaries and broke cohesion bonds between the TiNi grains.}, language = {en} } @misc{MorozovaObrosovNaumovetal., author = {Morozova, Iuliia and Obrosov, Aleksei and Naumov, Anton and Kr{\´o}licka, Aleksandra and Golubev, Iurii and Bokov, Dmitry O. and Doynov, Nikolay and Weiß, Sabine and Michailov, Vesselin}, title = {Impact of Impulses on Microstructural Evolution and Mechanical Performance of Al-Mg-Si Alloy Joined by Impulse Friction Stir Welding}, series = {Materials}, volume = {14}, journal = {Materials}, number = {2}, issn = {1996-1944}, doi = {https://doi.org/10.3390/ma14020347}, abstract = {Impulse Friction Stir Welding (IFSW) was utilized to join 6082-T6 alloy plates at various impulse frequencies. A distinctive feature of IFSW is the generation of mechanical impulses that enhances the forging action of the tool, and thereby, alters the weld microstructure. The microstructural evolution in the Stir Zone (SZ) with special focus on the strengthening precipitation behavior, and overall mechanical properties of the IFSW joints have been investigated. It was demonstrated that the strengthening β″ precipitates reprecipitated in the SZ of the IFSW joints during natural aging. In contrast, no precipitates were found in the SZ of the Friction Stir Welding (FSW) weld. Partial reversion of β″ after IFSW is supposed to occur due to more developed subgrain network and higher dislocation density introduced by impulses that accelerated precipitation kinetics. Dynamic recrystallisation was facilitated by impulses resulting in a fine, homogeneous structure. There was no significant difference between the microhardness in the SZ, tensile and yield strength of the FSW and IFSW joints. However, the application of impulses demonstrated the smoothing of the hardness reduction in the transition region at the advancing side. The shift of the fracture location from the Heat-Affected Zone (HAZ) by FSW to the SZ as well as higher elongation of the joints by IFSW of lower frequencies could be related to the grain refinement and the change of the grain orientation.}, language = {en} }