TY - GEN A1 - Markowski, Jens A1 - Arellano-Garcia, Harvey A1 - Meissner, André A1 - Acker, Jörg T1 - Comparative studies on the quality of recovered secondary graphites from the recycling of lithium-ion traction batteries T2 - Sustainable Minerals N2 - Automotive technology is increasingly determined by drives based on electric motors in combination with batteries. The lithium-ion traction battery is a storage medium that combines high electrical efficiency with compact dimensions and relatively low weight. For the recycling of the cathode coatings (esp. Ni, Mn, Co) and peripheral battery components a variety of recycling options already exist. The graphite coating of the anodes has hardly been the focus of research activities to date. State of the art is currently the melting of the complete Copper-anode foils including graphite coating, whereby the graphite contributes only as a carbon carrier to the recycling of the copper. Separation and reuse of the very high-quality graphite on an industrial scale has not yet taken place. At the BTU, a methodology has been developed, with which recovered anode graphites from traction batteries can be comprehensively characterised chemically and mechanically-physically. On this basis, targeted preparation for secondary applications is possible. The secondary graphites achieve a quality that allows them to be reused as second-use anode material and for other applications. KW - Graphitrecycling KW - Li-Ionen-Traction Batteries Y1 - 2023 UR - https://opus4.kobv.de/opus4-UBICO/frontdoor/index/index/docId/32005 UR - https://www.ceecthefuture.org/resource-center/comparative-studies-on-the-quality-of-recovered-secondary-graphites-from-the-recycling-of-lithium-ion-traction-batteries PB - Mining Engineering CY - Falmouth (UK) ER -