TY - GEN A1 - Klein, Marten A1 - Schmidt, Heiko T1 - Capturing features of turbulent Ekman–Stokes boundary layers with a stochastic modeling approach T2 - Advances in Science and Research N2 - Atmospheric boundary layers (ABLs) exhibit transient processes on various time scales that range from a few days down to seconds, with a scale separation of the large-scale forcing and the small-scale turbulent response. One of the standing challenges in modeling and simulation of ABLs is a physically based representation of complex multiscale boundary layer dynamics. In this study, an idealized time-dependent ABL, the so-called Ekman–Stokes boundary layer (ESBL), is considered as a simple model for the near-surface flow in the mid latitudes and polar regions. The ESBL is driven by a prescribed temporal modulation of the bulk–surface velocity difference. A stochastic one-dimensional turbulence (ODT) model is applied to the ESBL as standalone tool that aims to resolve all relevant scales of the flow along a representative vertical coordinate. It is demonstrated by comparison with reference data that ODT is able to capture relevant features of the time-dependent boundary layer flow. The model predicts a parametric enhancement of the bulk–surface coupling in the event of a boundary layer resonance when the flow is forced with the local Coriolis frequency. The latter reproduces leading order effects of the critical latitudes. The model results suggest that the bulk flow decouples from the surface for high forcing frequencies due to a relative increase in detached residual turbulence. KW - turbulent boundary layer KW - stochastic modeling KW - periodic forcing KW - one-dimensional turbulence KW - rotating flow Y1 - 2023 UR - https://opus4.kobv.de/opus4-UBICO/frontdoor/index/index/docId/31154 UR - https://asr.copernicus.org/articles/20/55/2023/ SN - 1992-0636 SN - 1992-0628 N1 - This article is part of the special issue “EMS Annual Meeting: European Conference for Applied Meteorology and Climatology 2022”. N1 - This research is supported by the German Federal Government, the Federal Ministry of Education and Research and the State of Brandenburg within the framework of the joint project EIZ: Energy Innovation Center with funds from the Structural Development Act (Strukturstärkungsgesetz) for coal-mining regions. VL - 20 SP - 55 EP - 64 ER -