TY - GEN A1 - Schwedt, Inge A1 - Schöne, Kerstin A1 - Eckert, Maike A1 - Pizzinato, Manon A1 - Winkler, Laura A1 - Knotkova, Barbora A1 - Richts, Björn A1 - Hau, Jann‐Louis A1 - Steuber, Julia A1 - Mireles, Raul A1 - Noda‐Garcia, Lianet A1 - Fritz, Günter A1 - Mittelstädt, Carolin A1 - Hertel, Robert A1 - Commichau, Fabian M. T1 - The low mutational flexibility of the EPSP synthase in Bacillus subtilis is due to a higher demand for shikimate pathway intermediates T2 - Environmental Microbiology N2 - Glyphosate (GS) inhibits the 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase that is required for aromatic amino acid, folate and quinone biosynthesis in Bacillus subtilis and Escherichia coli. The inhibition of the EPSP synthase by GS depletes the cell of these metabolites, resulting in cell death. Here, we show that like the laboratory B. subtilis strains also environmental and undomesticated isolates adapt to GS by reducing herbicide uptake. Although B. subtilis possesses a GS-insensitive EPSP synthase, the enzyme is strongly inhibited by GS in the native environment. Moreover, the B. subtilis EPSP synthase mutant was only viable in rich medium containing menaquinone, indicating that the bacteria require a catalytically efficient EPSP synthase under nutrient-poor conditions. The dependency of B. subtilis on the EPSP synthase probably limits its evolvability. In contrast, E. coli rapidly acquires GS resistance by target modification. However, the evolution of a GS-resistant EPSP synthase under non-selective growth conditions indicates that GS resistance causes fitness costs. Therefore, in both model organisms, the proper function of the EPSP synthase is critical for the cellular viability. This study also revealed that the uptake systems for folate precursors, phenylalanine and tyrosine need to be identified and characterized in B. subtilis. Y1 - 2023 UR - https://opus4.kobv.de/opus4-UBICO/frontdoor/index/index/docId/33396 SN - 1462-2912 SN - 1462-2920 VL - 25 IS - 12 SP - 3604 EP - 3622 ER -