TY - GEN A1 - Romero-Zaliz, RocĂ­o A1 - Perez, Eduardo A1 - Jimenez-Molinos, Francisco A1 - Wenger, Christian A1 - Roldan, Juan Bautista T1 - Study of Quantized Hardware Deep Neural Networks Based on Resistive Switching Devices, Conventional versus Convolutional Approaches T2 - Electronics (MDPI) N2 - A comprehensive analysis of two types of artificial neural networks (ANN) is performed to assess the influence of quantization on the synaptic weights. Conventional multilayer-perceptron (MLP) and convolutional neural networks (CNN) have been considered by changing their features in the training and inference contexts, such as number of levels in the quantization process, the number of hidden layers on the network topology, the number of neurons per hidden layer, the image databases, the number of convolutional layers, etc. A reference technology based on 1T1R structures with bipolar memristors including HfO2 dielectrics was employed, accounting for different multilevel schemes and the corresponding conductance quantization algorithms. The accuracy of the image recognition processes was studied in depth. This type of studies are essential prior to hardware implementation of neural networks. The obtained results support the use of CNNs for image domains. This is linked to the role played by convolutional layers at extracting image features and reducing the data complexity. In this case, the number of synaptic weights can be reduced in comparison to conventional MLPs. KW - RRAM KW - resistive switching KW - neural network Y1 - 2021 UR - https://opus4.kobv.de/opus4-UBICO/frontdoor/index/index/docId/27018 SN - 2079-9292 VL - 10 IS - 3 ER -