TY - GEN A1 - Bischoff, Carl A1 - Leise, Jakob A1 - Perez-Bosch Quesada, Emilio A1 - Perez, Eduardo A1 - Wenger, Christian A1 - Kloes, Alexander T1 - Implementation of device-to-device and cycle-to-cycle variability of memristive devices in circuit simulations T2 - Solid-State Electronics N2 - We present a statistical procedure for the extraction of parameters of a compact model for memristive devices. Thereby, in a circuit simulation the typical fluctuations of the current–voltage (I-V) characteristics from device-to-device (D2D) and from cycle-to-cycle (C2C) can be emulated. The approach is based on the Stanford model whose parameters play a key role to integrating D2D and C2C dispersion. The influence of such variabilities over the model’s parameters is investigated by using a fitting algorithm fed with experimental data. After this, the statistical distributions of the parameters are used in a Monte Carlo simulation to reproduce the I-V D2D and C2C dispersions which show a good agreement to the measured curves. The results allow the simulation of the on/off current variation for the design of RRAM cells or memristor-based artificial neural networks. KW - RRAM KW - circuit simulation KW - HfO2 Y1 - 2022 UR - https://opus4.kobv.de/opus4-UBICO/frontdoor/index/index/docId/28793 SN - 0038-1101 VL - 194 ER -