TY - CONF A1 - Bens, Oliver A1 - Raab, Thomas A1 - Spröte, Roland A1 - Forman, Steven L. A1 - Hüttl, Reinhard F. T1 - Holocene Dune Formation and Human-Induced Aeolian Remobilisation in South Brandenburg, Germany T2 - AGU 2008 Fall Meeting, Suppl. N2 - In the Mid Latitudes form and function of the earth surface are mainly affected by Pleistocene periglacial processes such as solifluction, cryoturbation and aeolian deposition. On the other hand, human impact on landscapes in Central Europe may date back to the earliest farmers from the Neolithic Period (c. 5500 a cal BC). At least since the Middle Ages intense land-use produced wide deforested areas. In the sand-rich North German Lowland these human-induced deforestation often resulted in the remobilisation of Late Pleistocene to Early Holocene sand dunes. Especially in the vicinity of former mining sites or glassworks the dune landscapes possess quite young stratigraphic disturbances (fossilized horizons, weak developed top soils). Within the scope of the Transregional Collaborative Research Centre (SFB/TRR) 38, funded by the Deutsche Forschungsgemeinschaft (DFG), inland dunes in South Brandenburg were used as comparison sites to study structures and processes of the initial ecosystem development phase in an artificial water catchment. Here, we present first results of the pedostratigraphy and the age of two dune systems near Glashuette which is about 50 km south of Berlin. Based on twelve Optical Stimulated Luminescence (OSL) and six radiocarbon (14C) datings a chronology of the landscape development for the last c. 10000 years is derived. Data prove that both dune systems - even though they are just c. 1 km apart and have similar morphological features such as height, width, and orientation - have a completely different history in aeolian sand deposition and pedogenesis. At dune 'Glashuette 1' a well established podsol forms the topsoil. At dune 'Glashuette 2' soil development is clearly in a more initial state showing only some humus accumulation and weaker podsolization processes. OSL and 14C ages of sand from 'Glashuette 1' range between about 11.4 ka cal. BC (3.9 m below surface) and 9.4 ka cal. BC (0.7 m below surface). Against that, the sands in 'Glashuette 2' are mainly dated to about 0.8 ka cal BC (3.4 to 0.7 m below surface). On the basis of our findings further analyses can be planned more accurately to study the impact of initial processes on the later state of ecosystems characteristics. Y1 - 2013 UR - https://opus4.kobv.de/opus4-UBICO/frontdoor/index/index/docId/9988 SP - H51D-0842 ER -