TY - GEN A1 - Milo, Valerio A1 - Anzalone, Francesco A1 - Zambelli, Cristian A1 - Perez, Eduardo A1 - Mahadevaiah, Mamathamba Kalishettyhalli A1 - Ossorio, Óscar G. A1 - Olivo, Piero A1 - Wenger, Christian A1 - Ielmini, Daniele T1 - Optimized programming algorithms for multilevel RRAM in hardware neural networks T2 - IEEE International Reliability Physics Symposium (IRPS), 2021 N2 - A key requirement for RRAM in neural network accelerators with a large number of synaptic parameters is the multilevel programming. This is hindered by resistance imprecision due to cycle-to-cycle and device-to-device variations. Here, we compare two multilevel programming algorithms to minimize resistance variations in a 4-kbit array of HfO 2 RRAM. We show that gate-based algorithms have the highest reliability. The optimized scheme is used to implement a neural network with 9-level weights, achieving 91.5% (vs. software 93.27%) in MNIST recognition. KW - RRAM KW - Multilevel switching KW - neural network KW - memristive switching Y1 - 2021 UR - https://opus4.kobv.de/opus4-UBICO/frontdoor/index/index/docId/27377 SN - 978-1-7281-6894-4 SN - 1938-1891 ER -