TY - CONF A1 - Caviedes-Voullieme, Daniel A1 - Andezhath Mohanan, Anju A1 - Brück, Yasemine A1 - Zaplata, Markus Klemens A1 - Hinz, Christoph A2 - Schütze, Niels A2 - Müller, Uwe A2 - Schwarze, Robert A2 - Wöhling, Thomas A2 - Grundmann, Jens T1 - Effect of surface water redistribution on vegetation encroachment in the constructed Hühnerwasser catchment T2 - M³ - Messen, Modellieren, Managen in Hydrologie und Wasserressourcenbewirtschaftung. Beiträge zum Tag der Hydrologie am 22./23. März 2018 an der Technischen Universität Dresden N2 - The artificial Hühnerwasser catchment has experienced a significant and monitored evolution since 2005, changing from a post-mining landscape to an almost fully vegetated ecosystem. The early stages showed a fast rate of ecohydrological evolution with changing dominating processes and feedbacks. The evolution of rill vegetation encroachment is one of such complex co-evolving processes. We hypothesise that rill vegetation encroachment is driven by the evolution of the hydrologic/hydraulic regime of the rill network, which in turn affects the regime, potentially creating a stabilising positive feedback. We further hypothesise that rill vegetation occurs later than hillslope vegetation, and follows a particular establishment and encroachment timeline in response to the changing hydrological/hydraulic regimes. That is, the early runoff-dominated regime results in higher flows, velocities, transport and erosion capacity, thus favouring seed flushing and seedling uprooting. On the other hand, as the system transitions from a runoffdominated into an infiltration- and ET-dominated system, flow, velocity, transport and erosion capacity in the rill network are reduced, making seed establishment in the rills more likely. We explore these hypothesis with two complementary approaches: an analysis of the spatiotemporal distribution of vegetation and a process-based numerical modelling study. Firstly, we assess aerial photography of rill vegetation encroachment between 2007 and 2012 in terms of several vegetation types to derive temporal indicators of encroachment. The analysis reveals that in the initial stages, a rill network developed in the hillslope. Shortly after vegetation first established on hillslopes, the rill network became progressively vegetated. Different pioneering species established heterogeneously, at different times and encroached into the rills at different rates. However, despite the volume of data, it is difficult to assess which are the governing and limiting processes which respectively drive and constrain how and at which rate vegetation encroaches into the rills. In consequence, a pilot modelling study to identify the relative relevance of rill network geometry, bare soil infiltration, hillslope vegetation heterogeneity and intra-storm variability on the hydraulic response of the rill network and its possible impact on encroachment. The overall results suggest that vegetation encroachment may be controlled by the rill network hydraulic regime, but such regime is the result of a complex superposition of responses of all the aforementioned factors, of which rill geometry appears to be a dominant one. Furthermore, the simulations showed that vegetation spatial heterogeneity has an impact on the hydraulic regime coupled to the presence of temporal rainfall variability. Altogether, these results show that the governing coevolving ecohydrological processes are interacting and are strongly affected by spatial and temporal heterogeneities. Y1 - 2018 UR - https://opus4.kobv.de/opus4-UBICO/frontdoor/index/index/docId/21645 UR - https://tu-dresden.de/bu/umwelt/hydro/ihm/hydrologie/ressourcen/dateien/tdh2018/TdH_2018_Abstractband.pdf SP - S. 91 PB - Technische Universität CY - Dresden ER -