TY - GEN A1 - Wulf, Ulrich A1 - Kučera, Jan A1 - Richter, Hans A1 - Horstmann, Manfred A1 - Wiatr, Maciej A1 - Höntschel, Jan T1 - Channel Engineering for Nanotransistors in a Semiempirical Quantum Transport Model T2 - Mathematics N2 - One major concern of channel engineering in nanotransistors is the coupling of the conduction channel to the source/drain contacts. In a number of previous publications, we have developed a semiempirical quantum model in quantitative agreement with three series of experimental transistors. On the basis of this model, an overlap parameter 0≤C≤1 can be defined as a criterion for the quality of the contact-to-channel coupling: A high level of C means good matching between the wave functions in the source/drain and in the conduction channel associated with a low contact-to-channel reflection. We show that a high level of C leads to a high saturation current in the ON-state and a large slope of the transfer characteristic in the OFF-state. Furthermore, relevant for future device miniaturization, we analyze the contribution of the tunneling current to the total drain current. It is seen for a device with a gate length of 26 nm that for all gate voltages, the share of the tunneling current becomes small for small drain voltages. With increasing drain voltage, the contribution of the tunneling current grows considerably showing Fowler–Nordheim oscillations. In the ON-state, the classically allowed current remains dominant for large drain voltages. In the OFF-state, the tunneling current becomes dominant. KW - nanotransistor KW - channel engineering KW - quantum transport KW - contact-to-channel coupling KW - wave function overlap KW - tunneling current Y1 - 2017 UR - https://opus4.kobv.de/opus4-UBICO/frontdoor/index/index/docId/20622 UR - http://www.mdpi.com/2227-7390/5/4/68 SN - 2227-7390 VL - 5 IS - 4 ER -