TY - GEN A1 - Melnikov, Anton A1 - Schenk, Hermann A. G. A1 - Monsalve, Jorge Mario A1 - Wall, Franziska A1 - Stolz, Michael A1 - Mrosk, Andreas A1 - Langa, Sergiu A1 - Kaiser, Bert T1 - Coulomb-actuated microbeams revisited: experimental and numerical modal decomposition of the saddle-node bifurcation T2 - Microsystems & Nanoengineering N2 - Electrostatic micromechanical actuators have numerous applications in science and technology. In many applications, they are operated in a narrow frequency range close to resonance and at a drive voltage of low variation. Recently, new applications, such as microelectromechanical systems (MEMS) microspeakers (µSpeakers), have emerged that require operation over a wide frequency and dynamic range. Simulating the dynamic performance under such circumstances is still highly cumbersome. State-of-the-art finite element analysis struggles with pull-in instability and does not deliver the necessary information about unstable equilibrium states accordingly. Convincing lumped-parameter models amenable to direct physical interpretation are missing. This inhibits the indispensable in-depth analysis of the dynamic stability of such systems. In this paper, we take a major step towards mending the situation. By combining the finite element method (FEM) with an arc-length solver, we obtain the full bifurcation diagram for electrostatic actuators based on prismatic Euler-Bernoulli beams. A subsequent modal analysis then shows that within very narrow error margins, it is exclusively the lowest Euler-Bernoulli eigenmode that dominates the beam physics over the entire relevant drive voltage range. An experiment directly recording the deflection profile of a MEMS microbeam is performed and confirms the numerical findings with astonishing precision. This enables modeling the system using a single spatial degree of freedom. KW - Engineering KW - NEMS KW - Sensors Y1 - 2021 UR - https://opus4.kobv.de/opus4-UBICO/frontdoor/index/index/docId/30576 SN - 2055-7434 VL - 7 IS - 1 ER -