TY - GEN A1 - Obrosov, Aleksei A1 - Yasenchuk, Yuri A1 - Marchenko, Ekaterina A1 - Gunther, Victor A1 - Radkevich, Andrey A1 - Kokorev, Oleg A1 - Gunther, Sergey A1 - Baigonakova, Gulsharat A1 - Hodorenko, Valentina A1 - Chekalkin, Timofey A1 - Kang, Ji-hoon A1 - Weiß, Sabine T1 - Biocompatibility and Clinical Application of Porous TiNi Alloys Made by Self-Propagating High-Temperature Synthesis (SHS) T2 - Materials N2 - Porous TiNi alloys fabricated by self-propagating high-temperature synthesis (SHS) are biomaterials designed for medical application in substituting tissue lesions and they were clinically deployed more than 30 years ago. The SHS process, as a very fast and economically justified route of powder metallurgy, has distinctive features which impart special attributes to the resultant implant, facilitating its integration in terms of bio-mechanical/chemical compatibility. On the phenomenological level, the fact of high biocompatibility of porous SHS TiNi (PTN) material in vivo has been recognized and is not in dispute presently, but the rationale is somewhat disputable. The features of the SHS TiNi process led to a multifarious intermetallic Ti4Ni2(O,N,C)-based constituents in the amorphous-nanocrystalline superficial layer which entirely conceals the matrix and enhances the corrosion resistance of the unwrought alloy. In the current article, we briefly explore issues of the high biocompatibility level on which additional studies could be carried out, as well as recent progress and key fields of clinical application, yet allowing innovative solutions. KW - porous SHS TiNi KW - biocompatibility KW - rheological similarity KW - corrosion resistance KW - bone substitution Y1 - 2019 UR - https://opus4.kobv.de/opus4-UBICO/frontdoor/index/index/docId/24280 UR - https://www.mdpi.com/1996-1944/12/15/2405/htm#B2-materials-12-02405 SN - 1996-1944 VL - 12 IS - 15 ER -