TY - GEN A1 - Fischer, Simon A1 - Foerster, Michael A1 - Aballe, Lucia A1 - Vonk, Vedran A1 - Falta, Jens A1 - Krisponeit, Jon-Olaf A1 - Flege, Jan Ingo T1 - Vanadium dioxide thin films on (100)- and (110)-oriented ruthenium dioxide islands T2 - Verhandlungen der DPG N2 - Bulk vanadium dioxide exhibits a metal-insulator transition at 68 ∘C. Because this change in resistivity is linked to a structural transition, the transition temperature can be tuned by epitaxial strain. Due to the high lattice mismatch of RuO2 with VO2, this substrate promises a highly shifted transition temperature, which enables new types of switching devices, smart coatings, and sensors. It is prepared by oxidizing a Ru(0001) crystal, providing micron-sized, (110)- as well as (100)-oriented RuO2 islands simultaneously. One of the challenges in preparing VO2 is to reliably meet the desired stoichiometry. We investigated the vanadium oxidation state using local XAS and XPS measurements taken at a synchrotron-based XPEEM instrument, revealing that VO2 stoichiometry is maintained throughout the entire film. This was found not only on RuO2(100) and RuO2(110), but also on the bare ruthenium substrate. The VO2 film thickness was determined to 3.6 nm by ex situ XRR measurements. Financial support from the DFG is acknowledged. KW - transition temperature KW - strain KW - synchrotron-based XPEEM KW - local X-Ray absorption spectroscopy (XAS) KW - local X-Ray photoelectron spectroscopy (XPS) Y1 - 2019 UR - https://opus4.kobv.de/opus4-UBICO/frontdoor/index/index/docId/23980 UR - https://www.dpg-verhandlungen.de/year/2019/conference/regensburg/part/o/session/37/contribution/5 SN - 0420-0195 SP - 330 EP - 330 PB - Deutsche Physikalische Gesellschaft CY - Bad Honnef ER -