TY - GEN A1 - Pozarowska, Emilia A1 - Pleines, Linus A1 - Prieto, Mauricio J. A1 - Tănase, Liviu Christian A1 - Souza Caldas, Lucas de A1 - Tiwari, Aarti A1 - Schmidt, Thomas A1 - Falta, Jens A1 - Morales, Carlos A1 - Flege, Jan Ingo T1 - The relation between structure sensitivity and doping of ceria(111) vs. ceria(100) T2 - Verhandlungen der DPG N2 - CeOx-Cu inverse catalysts have been shown to convert CO2 into valuable chemicals through catalytic hydrogenation. The catalytic activity may further be enhanced by alloying ceria with trivalent, catalytically active metals, such as Sm, promoting the formation of Ce3+ active sites. In this work, the structural and chemical properties of (111)- and (100)- oriented CeOx islands alloyed with samarium were explored by low-energy electron microscopy and X-ray photoemission electron microscopy. After Sm deposition on the as-grown CeOx islands, the near-surface region of (100)-oriented CeOx is reduced after exposure to H2 at 470 ∘C, whereas the deeper layers as well as the whole (111)-oriented islands retain the Ce4+ state. Subsequent reoxidation with O2 leads to the complete Ce4+ state recovery, suggesting the healing of oxygen vacancies. Additional annealing at 470 ∘C induces samarium diffusion into the ceria matrix. Yet, subsequent exposure to H2 reduces neither the (111)- nor the (100)-oriented CeSmOx islands, suggesting a quite unexpected stability of this system. KW - catalytic hydrogenation KW - Samarium alloying of cerium oxide KW - low-energy electron microscopy (LEEM) KW - X-ray photoemission electron microscopy (PEEM) KW - healing of oxygen vacancies Y1 - 2022 UR - https://opus4.kobv.de/opus4-UBICO/frontdoor/index/index/docId/29320 UR - https://www.dpg-verhandlungen.de/year/2022/conference/regensburg/part/o/session/52/contribution/11 SN - 0420-0195 PB - Deutsche Physikalische Gesellschaft CY - Bad Honnef ER -