TY - CONF A1 - Acker, Jörg A1 - Ducke, Jana A1 - Rietig, Anja A1 - Müller, Tim A1 - Eisert, Stefan A1 - Reichenbach, Birk A1 - Löser, Wolfgang A2 - Oye, Harald A. A2 - Brekken, Harald A2 - Rong, Harry A2 - Tangstad, Merete A2 - Tveit, Halvard T1 - Segregation, grain boundary milling, and chemical leaching for the refinement of metallurgical-grade silicon for photovoltaic application T2 - Silicon for the Chemical and Solar Industry XII, Trondheim, 2014 N2 - The present work describes a completely new approach to the solidification refinement of metallurgical-grade silicon. The new process comprises the following steps: (i) The first step involves adding auxiliary metals to the molten silicon in order to segregate the metallic and non-metallic impurities in the secondary phase after cooling. (ii) The melt is rapidly cooled in the cellular solidification regime. This generates a Si microstructure with a defined cell size in which all cell boundaries are surrounded by the secondary phase. Furthermore, the secondary phase should form an interconnected three-dimensional network. (iii) The solids are crushed by shockwaves using electrohydraulic fragmentation techniques. The shockwaves lead to preferential crushing at the interface between the silicon and the secondary phase. (iv) The secondary phases are fast and effectively removed by microwave-assisted high-pressure leaching that was newly developed for this process. The potential of the new refinement procedure is demonstrated with auxiliary metals Ca, Al, and Ti. This new procedure yields a significant decrease in phosphorous and metal impurities. KW - silicon KW - leaching KW - hydrometallurgy KW - solar cell KW - segregation KW - etching Y1 - 2017 UR - https://opus4.kobv.de/opus4-UBICO/frontdoor/index/index/docId/19125 SN - 978-82-997357-8-0 SP - 177 EP - 188 PB - Department of Materials Science and Engineering, Norwegian University of Science and Technology CY - Trondheim ER -