TY - CONF A1 - Rietig, Anja A1 - Acker, Jörg A2 - Nygaard, Lars A2 - Pachaly, Bernd A2 - Page, Ingrid Gamst A2 - Rong, Harry A2 - Tangstad, Merete A2 - Tveit, Halvard T1 - A new and fast method for determination of boron, phosphorus and other trace elements in metallurgical grade silicon T2 - Silicon for the Chemical and Solar Industry XIII, Kristiansand, 2016 N2 - A new method for accurate and precise determination of non-metallic and metallic impurities in silicon was developed and statistically validated. The first step is the fast dissolution of silicon in a microwave-assisted high pressure system to minimize a loss of phosphorus. The essential innovation is the use of the concentrated digestion solution for ICP-OES measurements. This approach avoids the common removal of the silicon and acid matrix by volatilization, which can cause considerable losses of boron. Finally, for the ICP-OES measurements in such high-silicon matrices the optimum measuring conditions were determined and a careful selection of emission lines with respect to selectivity, spectral and non-spectral inferences and matrix effects was performed. The method of matrix matched calibration (MMC) is used for quantification of the impurities’ contents. For Al, Mg, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zr and P the validation was performed against certified reference materials (IPT134, IPT135, NIST57b). To validate the determination of boron 9 silicon samples of different boron contents from three interlaboratory comparisons were used. The new procedure allows the determination of impurities of 4N-silicon (12 elements) with high precision and accuracy. KW - silicon KW - ICP-OES KW - impurity KW - chemical analysis KW - boron KW - phosphorus Y1 - 2017 UR - https://opus4.kobv.de/opus4-UBICO/frontdoor/index/index/docId/19129 UR - https://www.ntnu.no/trykk/publikasjoner/Silicon%20for%20the%20chemical%20and%20solar%20industry%20XIII/ SP - 95 EP - 106 PB - Department of Materials Science and Engineering, Norwegian University of Science and Technology CY - Trondheim ER -