TY - GEN A1 - Baena-Moreno, Francisco Manuel A1 - González-Castaño, Miriam A1 - Navarro de Miguel, Juan Carlos A1 - Miah, Kamal Uddin Mohammad A1 - Ossenbrink, Ralf A1 - Odriozola, José Antonio A1 - Arellano-Garcia, Harvey T1 - Stepping toward Efficient Microreactors for CO2 Methanation: 3D Printed Gyroid Geometry T2 - ACS Sustainable Chemistry & Engineering N2 - This work presents a comparative study towards the development of efficient micro-reactors based on 3D-printed structures. Thus, the study evaluates the influence of the metal substrate geometry on the performance of structured catalysts for the CO2 methanation reaction. For this purpose, 0.5%Ru–15%Ni/MgAl2O4 catalyst is wash coated over two different micro-monolithic metal substrates: a conventional parallel channel honeycomb structure and a novel 3D-printed structure with a complex gyroid geometry. The effect of the metal substrate geometry is analyzed for several CO2 sources including ideal flue gas atmospheres, the presence of residual CH4 and CO in the flue gas, as well as simulated biogas sources. The advantages of the gyroid-3D complex geometries over the honeycomb structures are shown for all evaluated conditions, providing at the best-case scenario a 14% improvement of CO2 conversion. Moreover, this contribution shows that systematically tailoring geometrical features of structured catalysts becomes an effective strategy to achieve improved catalysts performances independent of the flue gas composition. By enhancing the transport processes and the gas-catalyst interactions, the employed gyroid 3D metal substrates enable boosted CO2 conversions and greater CH4 selectivity within diffusional controlled regimes. KW - CO2 methanation KW - gyroid geometry KW - CH4 selectivity KW - gyroid-3D complex Y1 - 2021 UR - https://opus4.kobv.de/opus4-UBICO/frontdoor/index/index/docId/27559 SN - 2168-0485 VL - 9 IS - 24 SP - 8198 EP - 8206 ER -