TY - GEN A1 - Berg, Heinz Peter A1 - Himmelberg, Axel A1 - Lehmann, Mario A1 - Dückershoff, Roland A1 - Neumann, Mathias T1 - The Turbo-Fuel-Cell 1.0 – family concept - Compact Micro Gas Turbine (MGT) – Solid Oxide Fuel Cell (SOFC) energy converters in the 100 - 500 kW electrical power range for the future T2 - IOP conference series : Materials Science and Engineering N2 - The “Turbo-Fuel-Cell-Technology” has been described as a MGT-SOFC hybrid system consisting of a recuperated micro gas turbine (MGT) process with an embedded solid oxide fuel cell (SOFC) subsystem. SOFC stacks are connected to “SOFC stack grapes” and are equipped with the so called HEXAR-Module. This module is composed of a high-temperature heat exchanger (HEX), an afterburner (A) and a steam reformer (R). The MGT-concept is based on a generator driven directly by the turbomachine and a recuperator, which returns the exhaust heat to the pressurized compressor outlet air. This provides the necessary base for a highly effective, pure MGT process and the “MGT-SOFC-high-efficiency process”. This paper describes the concept and the thermodynamic background of a highly effective and compact design of the “Turbo-Fuel-Cell 1.0-Family” in the electrical performance class from 100 to 500kW. The technological state of the system is shown and a rating of the system with comparative parameters is discussed. It becomes visible that all necessary basic technologies should be available and that the technology (for stationary applications) can have the “entry into services (E.I.S.)” in the next 10 years. The MGT-SOFC performance map under different operation conditions is discussed. This article also provides an overview of the research on MGT-SOFC-Systems and the scenario of an energy supply network and a mobile energy conversion of the future introduction. KW - MGT-SOFC KW - Brennstoffzellen KW - Mikrogasturbinen KW - Hybrid Y1 - 2018 UR - https://opus4.kobv.de/opus4-UBICO/frontdoor/index/index/docId/21879 UR - http://iopscience.iop.org/article/10.1088/1757-899X/297/1/012004 SN - 1757-899X VL - 297 ER -