TY - GEN A1 - Perez, Eduardo A1 - Mahadevaiah, Mamathamba Kalishettyhalli A1 - Perez-Bosch Quesada, Emilio A1 - Wenger, Christian T1 - In-depth characterization of switching dynamics in amorphous HfO2 memristive arrays for the implementation of synaptic updating rules T2 - Japanese Journal of Applied Physics N2 - Accomplishing truly analog conductance modulation in memristive arrays is crucial in order to implement the synaptic plasticity in hardware-based neuromorphic systems. In this paper, such a feature was addressed by exploiting the inherent stochasticity of switching dynamics in amorphous HfO2 technology. A thorough statistical analysis of experimental characteristics measured in 4 kbit arrays by using trains of identical depression/potentiation pulses with different voltage amplitudes and pulse widths provided the key to develop two different updating rules and to define their optimal programming parameters. The first rule is based on applying a specific number of identical pulses until the conductance value achieves the desired level. The second one utilized only one single pulse with a particular amplitude to achieve the targeted conductance level. In addition, all the results provided by the statistical analysis performed may play an important role in understanding better the switching behavior of this particular technology. KW - RRAM KW - memristive device KW - HfO2 KW - memristive switching Y1 - 2022 UR - https://opus4.kobv.de/opus4-UBICO/frontdoor/index/index/docId/29035 SN - 0021-4922 VL - 61 SP - 1 EP - 7 ER -