TY - GEN A1 - Peng, Lei A1 - Wollenberger, Ulla A1 - Kinne, Matthias A1 - Hofrichter, Martin A1 - Ullrich, René A1 - Scheibner, Katrin A1 - Fischer, Anna A1 - Scheller, Frieder W. T1 - Peroxygenase based sensor for aromatic compounds T2 - Biosensors and Bioelectronics N2 - We report on the redox behaviour of the peroxygenase from Agrocybe aegerita (AaeAPO) which has been electrostatically immobilized in a matrix of chitosan-embedded gold nanoparticles on the surface of a glassy carbon electrode. AaeAPO contains a covalently bound heme-thiolate as the redox active group that exchanges directly electrons with the electrode via the gold nanoparticles. The formal potential E ° ′ of AaeAPO in the gold nanoparticles-chitosan film was estimated to be −(286 ± 9) mV at pH 7.0. The heterogeneous electron transfer rate constant (ks) increases from 3.7 in the scan rate range from 0.2 to 3.0 V s−1 and level off at 63.7 s−1. Furthermore, the peroxide-dependent hydroxylation of aromatic compounds was applied to develop a sensor for naphthalene and nitrophenol. The amperometric measurements of naphthalene are based on the indication of H2O2 consumption. For the chitosan-embedded gold nanoparticle system, the linear range extends from 4 to 40 μM naphthalene with a detection limit of 4.0 μM (S/N = 3) and repeatability of 5.7% for 40 μM naphthalene. KW - Peroxygenase KW - Direct electron transfer KW - Nanoparticles KW - Naphthalene biosensor KW - Bioelectrocatalysis Y1 - 2014 UR - https://opus4.kobv.de/opus4-UBICO/frontdoor/index/index/docId/11655 UR - https://nbn-resolving.org/http://www.sciencedirect.com/science/article/pii/S0956566310004501 SN - 1873-4235 VL - 26 IS - 4 SP - 1432 EP - 1436 ER -