TY - GEN A1 - Grönke, Martin A1 - Schmidt, Peer A1 - Valldor, Martin A1 - Oswald, Steffen A1 - Wolf, Daniel A1 - Lubk, Axel A1 - Büchner, Bernd A1 - Hampel, Silke T1 - Chemical vapor growth and delamination of α-RuCl3 nanosheets down to the monolayer limit T2 - Nanoscale N2 - 2D layered honeycomb magnet α-ruthenium(III) chloride (α-RuCl3) is a promising candidate to realize a Kitaev spin model. As alteration of physical properties on the nanoscale is additionally intended, new synthesis approaches to obtain phase pure α-RuCl3 nanocrystals have been audited. Thermodynamic simulations of occurring gas phase equilibria were performed and optimization of synthesis conditions was achieved based on calculation results. Crystal growth succeeded via chemical vapor transport (CVT) in a temperature gradient of 973 K to 773 K on YSZ substrates. Single crystal sheets of high crystallinity with heights ≤ 30 nm were obtained via pure CVT. The crystal properties were characterized by means of optical and electron microscopy, AFM, SAED, micro-Raman and XPS proving their composition, morphology, crystallinity and phase-purity. A highlight of our study is the successful individualization of nanocrystals and the delamination of nanosheets on YSZ substrates down to the monolayer limit (≤ 1 nm) which was realized by means of substrate exfoliation and ultrasonication in a very reproducible way. KW - Crystal growth KW - Thermodynamic modeling KW - Chemical vapor transport KW - 2D layered compounds KW - Nanocrystals Y1 - 2018 UR - https://opus4.kobv.de/opus4-UBICO/frontdoor/index/index/docId/22466 UR - https://pubs.rsc.org/en/content/articlelanding/2018/nr/c8nr04667k#!divAbstract SN - 2040-3372 VL - 10 IS - 40 SP - 19014 EP - 19022 ER -