TY - GEN A1 - Grönke, Martin A1 - Buschbeck, Benjamin A1 - Schmidt, Peer A1 - Valldor, Martin A1 - Oswald, Steffen A1 - Hao, Qi A1 - Lubk, Axel A1 - Wolf, Daniel A1 - Steiner, Udo A1 - Büchner, Bernd A1 - Hampel, Silke T1 - Chromium Trihalides CrX₃(X = Cl, Br, I): Direct Deposition of Micro‐ and Nanosheets on Substrates by Chemical Vapor Transport T2 - Advanced Materials Interfaces N2 - The experimental observation of intrinsic ferromagnetism in single layered chromium trihalides CrX₃ (X = Cl, Br, I) has gained outstanding attention recently due to their possible implementation in spintronic devices. However, the reproducible preparation of highly crystalline chromium(III) halide nanolayers without stacking faults is still an experimental challenge. As chromium trihalides consist of adjacent layers with weak interlayer coupling, the preparation of ultrathin CrX₃ nanosheets directly on substrates via vapor transport proves as an advantageous synthesis technique. It is demonstrated that vapor growth of ultrathin highly crystalline CrX₃ micro‐ and nanosheets succeeds directly on yttrium stabilized zirconia substrates in a one‐step process via chemical vapor transport (CVT) in temperature gradients of 100 K (600°C → 500°C for CrCl₃ and 650°C → 550°C for CrBr₃ or CrI₃) without a need for subsequent delamination. Due to simulation results, optimization of synthesis conditions is realized and phase pure CrX₃ nanosheets with thicknesses ≤25 nm are obtained via short term CVT. The nanosheets morphology, crystallinity, and phase purity are analyzed by several techniques, including microscopy, diffraction, and spectroscopy. Furthermore, a potential subsequent delamination technique is demonstrated to give fast access to CrX₃ monolayers using the example of CrCl₃ . KW - 2D layered compounds KW - Crystal growth KW - Chemical vapor transport KW - Halides KW - Nanocrystals KW - Thermodynamic modeling Y1 - 2019 UR - https://opus4.kobv.de/opus4-UBICO/frontdoor/index/index/docId/24523 UR - https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.201901410 SN - 2196-7350 VL - 6 IS - 24 ER -