TY - GEN A1 - Das, Chittaranjan A1 - Kot, Małgorzata A1 - Hellmann, Tim A1 - Wittich, Carolin A1 - Mankel, Eric A1 - Zimmermann, Iwan A1 - Schmeißer, Dieter A1 - Nazeeruddin, Mohammad Khaja A1 - Jaegermann, Wolfram T1 - Atomic Layer-Deposited Aluminum Oxide Hinders Iodide Migration and Stabilizes Perovskite Solar Cells T2 - Cell Reports Physical Science N2 - Iodide migration causes degradation of the perovskite solar cells. Here,we observe the direct migration of iodide into the hole-transport layer in a device. We demonstrate that ultrathin room temperature atomic layer-deposited Al2O3 on the perovskite surface very effectively hinders the migration. The perovskite-Al2O3 interface enables charge transfer across the Al2O3 layer in the solar cells, without causing any drastic changes in the properties of the perovskite absorber. Furthermore, it helps to preserve the initial properties of the perovskite film during exposure to light and air under real operating conditions, and thus, improves the stability of the solar cells. The ultrathin Al2O3 layer deposited at room temperature significantly increases the lifetime of the perovskite solar cells, and we hope this may be a step toward the mass production of stable devices. KW - perovskite solar cells KW - iodine migration KW - stability KW - X-ray photoelectron spectroscopy (XPS) KW - atomic layer deposition (ALD) KW - aluminum oxide (Al2O3) Y1 - 2020 UR - https://opus4.kobv.de/opus4-UBICO/frontdoor/index/index/docId/25908 SN - 2666-3864 VL - 1 IS - 7 ER -