TY - GEN A1 - Kazula, Stefan A1 - Wöllner, Mark A1 - Höschler, Klaus T1 - Identification of efficient geometries for variable pitot inlets for supersonic transport T2 - Aircraft Engineering and Aerospace Technology N2 - Purpose – This paper aims to reveal the influence of selected geometric parameters on the aerodynamic performance of circular variable aero engine inlets in transonic and supersonic civil aviation. Design/methodology/approach – The trade-off in inlet design and aerodynamic evaluation parameters is presented. The approach to investigate the dependencies between the aerodynamic and geometric parameters at different flight conditions by means of a parametric design study is introduced. Findings – The dependencies of inlet drag and efficiency from geometric parameters at flight speeds of Mach 0.95 up to Mach 1.6 are identified. Although entailing additional weight, the inlet length represents the parameter with the highest potential for drag reduction by up to 50% in the selected design space. Ideal geometries for variable pitot inlets are determined. After considering weight, their potential range benefit nearly disappears for subsonic applications, but remains above 20% for supersonic flight at Mach 1.6. Originality/value – Hence, the technology of circular variable pitot inlets for supersonic transport aircraft could be a way to achieve the ambitious ecological, safety and economic goals for future civil aviation. KW - Benefit of supersonic variable axisymmetric pitot inlets KW - Supersonic transport (SST) KW - Ideal aircraft intake geometries KW - Pitot inlet drag estimation Y1 - 2020 UR - https://opus4.kobv.de/opus4-UBICO/frontdoor/index/index/docId/25735 SN - 0002-2667 VL - 92 IS - 7 SP - 981 EP - 992 ER -