TY - GEN A1 - Wachendorf, Magnus A1 - Schloz, Mona A1 - Küppers, Manfred A1 - Güney, Aylin A1 - Veste, Maik T1 - Wintertime photosynthesis and spring recovery of Ilex Aquifolium L. T2 - iForest Biogeosciences and Forestry N2 - Former studies using the chlorophyll fluorescence technique on evergreen Ilex aquifolium L. showed that its photosynthetic potential for electron transport in winter recovers quickly when exposed to more favorable conditions. Since little is known, however, about its photosynthetic carbon gain in winter, we investigated its leaf gas exchange over an entire winter and spring period. Measurements were made rotationally in the field and in the laboratory to also investigate if I. aquifolium profits from warmer phases during winter in terms of net carbon gain. From the end of autumn until the end of spring, three different climate-driven phases of photosynthetic responses could be distinguished: first, an acclimation phase which lasted until February and was characterized by a gradually decreasing light-saturated gross photosynthesis (Amax(gross)), decreasing apparent quantum yield of CO₂-assimilation (ɸi) and a decreasing ability of these parameters to recover overnight inside the laboratory. At the same time, maximal quantum yield of PSII (Fv/Fm) could fully regenerate. In this phase, single warmer days had a positive effect on carbon assimilation. Second, a phase of relatively constant but low photosynthesis which was virtually unaffected by temperature, lasting for almost two months occurred. Here, Amax(gross) and ɸi had lost their ability to recover from winter conditions in the field, while Fv/Fm was much less affected. I. aquifolium was still able to conduct positive light-saturated net photosynthesis at a leaf temperature of -0.5°C, but during this time it could not profit from milder temperatures in terms of carbon gain. Third, a phase of increasing photosynthesis (spring recovery) occurred, starting in March when the 5-day average temperature was above 5°C and radiation in the field increased, and where all parameters slowly recovered from winter depressions. Our findings show that I. aquifolium is photosynthetically active over the whole winter, even at temperatures around 0°C. In terms of carbon gain, however, I. aquifolium does not profit from warmer phases during winter, despite the fast recovery seen in chlorophyll fluorescence measurements. Y1 - 2019 UR - https://opus4.kobv.de/opus4-UBICO/frontdoor/index/index/docId/24441 SN - 1971-7458 VL - 12 IS - 4 SP - 389 EP - 396 ER -