TY - GEN A1 - Starick, Tommy A1 - Medina Méndez, Juan Ali A1 - Schmidt, Heiko T1 - Towards a dynamic model adaptive combustion closure using LEM, ODT, and HiPS T2 - 17th International Conference on Numerical Combustion, May 6-8, 2019, Aachen, Germany, Book of Abstracts N2 - The computational cost of Direct Numerical Simulations (DNS) that resolve all scales rises with the cube of the Reynolds numberand is currently not feasible for real world applications. Large Eddy Simulations (LES) overcome this limitation by only resolving the large scale effects and completely model the small scaleeffects. This results in a strong dependence of the accuracy onthe chosen subgrid-scale model. The model adaptivity concept discussed in [Schmidt et al., ICDERS, 2007] dynamically uses different Linear Eddy Model (LEM) types [Kerstein, LEM, 1988] for stochastic closure to model the turbulent flame speed of apremixed flame within LES. In the talk, we will first summarize the progress of our group on One Dimensional Turbulence (ODT) [Kerstein, ODT, 1999] and Hierarchical Parcel Swapping (HiPS) [Kerstein, HiPS, 2013] based on reactive stand-alone simulations, [Jozefik et al., Combust. Flame, 2015] [Jozefik et al., Combust. Flame, 2016] [Medina et al., Combust. Flame, 2018]. Second,we will sketch a possible combination of the model adaptivity concept [Schmidt et al., ICDERS, 2007] and recent efficient ODTLES implementations [Glawe et al., Z. Angew. Math. Mech.,2018] to dynamically use LEM, ODT and HIPS together inside ofLES solvers to simulate turbulent reactive flows. Y1 - 2020 UR - https://opus4.kobv.de/opus4-UBICO/frontdoor/index/index/docId/25063 UR - https://nc19.itv.rwth-aachen.de/bookOfAbstracts.pdf SP - 143 EP - 144 CY - Aachen ER -