TY - GEN A1 - Maywald, Thomas A1 - Heinrich, Christoph Rocky A1 - Kühhorn, Arnold A1 - Schrape, Sven A1 - Backhaus, Thomas T1 - Prediction of Geometrically Induced Localization Effects Using a Subset of Nominal System Modes T2 - ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition June 17–21, 2019 Phoenix, Arizona, USA N2 - It is widely known that the vibration characteristics of blade integrated discs can dramatically change in the presence of manufacturing tolerances and wear. In this context, an increasing number of publications discuss the influence of the geometrical variability of blades on phenomena like frequency splitting and mode localization. This contribution is investigating the validity of a stiffness modified reduced order model for predicting the modal parameters of a geometrically mistuned compressor stage. In detail, the natural frequencies and mode shapes, as well as the corresponding mistuning patterns, are experimentally determined for an exemplary rotor. Furthermore, a blue light fringe projector is used to identify the geometrical differences between the actual rotor and the nominal blisk design. With the help of these digitization results, a realistic finite element model of the whole compressor stage is generated. Beyond that, a reduced order model is implemented based on the nominal design intention. Finally, the numerical predictions of the geometrically updated finite element model and the stiffness modified reduced order model are compared to the vibration measurement results. The investigation is completed by pointing out the benefits and limitations of the SNM-approach in the context of geometrically induced mistuning effects. KW - Blades KW - Compressors KW - Design KW - Disks KW - Finite element model KW - Manufacturing KW - Vibration measurement Y1 - 2019 UR - https://opus4.kobv.de/opus4-UBICO/frontdoor/index/index/docId/24645 UR - https://asmedigitalcollection.asme.org/GT/proceedings-abstract/GT2019/58691/V07BT35A012/1067131 SN - 978-0-7918-5869-1 ER -