TY - GEN A1 - Baroni, Andrea A1 - Glukhov, Artem A1 - Perez, Eduardo A1 - Wenger, Christian A1 - Ielmini, Daniele A1 - Olivo, Piero A1 - Zambelli, Cristian T1 - Low Conductance State Drift Characterization and Mitigation in Resistive Switching Memories (RRAM) for Artificial Neural Networks T2 - IEEE Transactions on Device and Materials Reliability N2 - The crossbar structure of Resistive-switching random access memory (RRAM) arrays enabled the In-Memory Computing circuits paradigm, since they imply the native acceleration of a crucial operations in this scenario, namely the Matrix-Vector-Multiplication (MVM). However, RRAM arrays are affected by several issues materializing in conductance variations that might cause severe performance degradation. A critical one is related to the drift of the low conductance states appearing immediately at the end of program and verify algorithms that are mandatory for an accurate multi-level conductance operation. In this work, we analyze the benefits of a new programming algorithm that embodies Set and Reset switching operations to achieve better conductance control and lower variability. Data retention analysis performed with different temperatures for 168 hours evidence its superior performance with respect to standard programming approach. Finally, we explored the benefits of using our methodology at a higher abstraction level, through the simulation of an Artificial Neural Network for image recognition task (MNIST dataset). The accuracy achieved shows higher performance stability over temperature and time. KW - RRAM KW - neural network KW - Multilevel switching Y1 - 2022 UR - https://opus4.kobv.de/opus4-UBICO/frontdoor/index/index/docId/29286 SN - 1530-4388 VL - 22 IS - 3 SP - 340 EP - 347 ER -