TY - GEN A1 - Strobel, Carsten A1 - Alvarado Chavarin, Carlos A1 - Richter, Karola A1 - Knaut, Martin A1 - Reif, Johanna A1 - Völkel, Sandra A1 - Jahn, Andreas A1 - Albert, Matthias A1 - Wenger, Christian A1 - Kirchner, Robert A1 - Bartha, Johann Wolfgang A1 - Mikolajick, Thomas T1 - Novel Graphene Adjustable-Barrier Transistor with Ultra-High Current Gain T2 - ACS Applied Materials & Interfaces N2 - A graphene-based three terminal barristor device was proposed to overcome the low on/off ratios and insufficient current saturation of conventional graphene field effect transistors. In this study, we fabricated and analyzed a novel graphene-based transistor, which resembles the structure of the barristor but uses a different operating condition. This new device, termed graphene adjustable-barriers transistor (GABT), utilizes a semiconductor-based gate rather than a metal−insulator gate structure to modulate the device currents. The key feature of the device is the two graphene-semiconductor Schottky barriers with different heights that are controlled simultaneously by the gate voltage. Due to the asymmetry of the barriers, the drain current exceeds the gate current by several orders of magnitude. Thus, the GABT can be considered an amplifier with an alterable current gain. In this work, a silicon−graphene−germanium GABT with an ultra-high current gain (ID/IG up to 8 × 106) was fabricated, and the device functionality was demonstrated. Additionally, a capacitance model is applied to predict the theoretical device performance resulting in an on−off ratio above 106, a swing of 87 mV/dec, and a drivecurrent of about 1 × 106 A/cm2. KW - Graphene KW - Transistor Y1 - 2022 UR - https://opus4.kobv.de/opus4-UBICO/frontdoor/index/index/docId/29285 SN - 1944-8244 SN - 1944-8252 VL - 14 IS - 34 SP - 39249 EP - 39254 ER -