TY - GEN A1 - Yarman, Aysu A1 - Gröbe, Glenn A1 - Neumann, Bettina A1 - Kinne, Mathias A1 - Gajovic-Eichelmann, Nenad A1 - Wollenberger, Ulla A1 - Hofrichter, Martin A1 - Ullrich, René A1 - Scheibner, Katrin A1 - Scheller, Frieder W. T1 - The aromatic peroxygenase from Marasmius rutola—a new enzyme for biosensor applications T2 - Analytical and Bioanalytical Chemistry N2 - The aromatic peroxygenase (APO; EC 1.11.2.1) from the agraric basidomycete Marasmius rotula (MroAPO) immobilized at the chitosan-capped gold-nanoparticle-modified glassy carbon electrode displayed a pair of redox peaks with a midpoint potential of −278.5 mV vs. AgCl/AgCl (1 M KCl) for the Fe2+/Fe3+ redox couple of the heme-thiolate-containing protein. MroAPO oxidizes aromatic substrates such as aniline, p-aminophenol, hydroquinone, resorcinol, catechol, and paracetamol by means of hydrogen peroxide. The substrate spectrum overlaps with those of cytochrome P450s and plant peroxidases which are relevant in environmental analysis and drug monitoring. In M. rotula peroxygenase-based enzyme electrodes, the signal is generated by the reduction of electrode-active reaction products (e.g., p-benzoquinone and p-quinoneimine) with electro-enzymatic recycling of the analyte. In these enzyme electrodes, the signal reflects the conversion of all substrates thus representing an overall parameter in complex media. The performance of these sensors and their further development are discussed. KW - Unspecific peroxygenase KW - Biosensors KW - Cytochrome P450 KW - Phenolic substances Y1 - 2014 UR - https://opus4.kobv.de/opus4-UBICO/frontdoor/index/index/docId/11642 UR - http://link.springer.com/article/10.1007%2Fs00216-011-5497-y SN - 1618-2650 VL - 402 IS - 1 SP - 405 EP - 412 ER -