TY - GEN A1 - Schafferus, Markus A1 - Sasakaros, Marios A1 - Wirsum, Manfred A1 - Zobel, Arthur A1 - Vogt, Damian A1 - Nakos, Alex A1 - Beirow, Bernd T1 - Experimental Investigation of Synchronous Flow Induced Blade Vibrations on a Radial Turbine - Part 1: Nominal Inlet Guide Vane T2 - Proceedings of ASME Turbo Expo 2023, Boston, Massachusetts, June 26-30, 2023, Volume 11, A. Aerodynamics excitation and damping, bearing and seal dynamics N2 - The service life of today’s turbochargers is limited among other things by the mechanical load caused by blade vibrations. In this context, the precise determination of the resonance operating points and the estimation of the vibration magnitudes are essential for an accurate assessment of the service life of the turbocharger components. Forced blade vibrations in radial turbines are primarily flow induced. Flow induced blade vibrations are caused by the nonuniform flow field in the circumferential direction which acts on the blades as a cyclic pressure fluctuation. Previous studies identified the inlet guide vane (IGV) as well as the spiral turbine housing as the primary sources of the non-uniform flow field. In the present study a thorough experimental investigation of the synchronous blade vibrations of a radial turbine is performed. A detailed description of the experimental setup is given. In this setup the vibrations are captured with two redundant measurement systems during real turbocharger operation. Strain gauges, applied on certain blades, as well as optical tip-timing sensors distributed on the circumference of the turbine shroud are used. The advantages of the combined usage of these two measuring systems are shown in the paper. Initially, the blade vibration modes are determined experimentally in stand still tests and numerically calculated through FEM models. This served for the creation of a Campbell diagram, which determined the speed ranges that are examined. The mistuning, which is not taken into account in the numerics, is therefore determined via the experiment. In addition, the experimental results are compared with those of numerics and the frequencies from standstill test. The first part of this two-part paper is focused on the vibrations caused by the “nominal” IGV. This “nominal” IGV has twice the number of blades compared to the rotor. Part 2 will analyze the changes of the blade vibrations due to the application of two different IGVs. Y1 - 2024 UR - https://opus4.kobv.de/opus4-UBICO/frontdoor/index/index/docId/32558 SN - 978-0-7918-8705-9 PB - ASME CY - New York ER -